Method for expert evaluation of the technical con-dition of the cylinder-piston group of automotive engines after hydrolock

Authors

DOI:

https://doi.org/10.30977/VEIT.2024.25.0.7

Keywords:

cold cranking, cold start, compression, hydrolock, modeling

Abstract

Problem: The study examines the thermogasdynamic process within an internal combustion engine cylinder during cold cranking mode while measuring compression. Analysis of various models and comparison of known data revealed unresolved challenges in constructing mathematical models of the engine operating cycle. The vast majority of practical data and recommendations for compression measurement in a cylinder are based on empirical knowledge, numerous experiments, and tests. Consequently, there arises a need for computational models of the compression measurement process and their theoretical justification, particularly in cases where engine damage occurs during hydrolock in a cylinder. Methodology. To address the identified issues, a mathematical model of the thermogasdynamic process within the cylinder during cold cranking while measuring compression was developed. Originality. Unlike existing models, this model describes the processes in the cylinder step by step, considering the real nature of intake-exhaust processes, air leakage through part interfaces, and heat exchange with the walls. Through modeling, the main patterns of compression changes depending on the modes and the nature of damage to associated parts of the valve mechanism and the cylinder-piston group were identified, including deformation of the connecting rod during hydraulic lock due to liquid entering the cylinder. Practical value. Based on the study results, it was concluded that the model's properties make it effectively applicable in diagnosing and monitoring the technical condition of automotive engines during operation.

Author Biographies

Alexander Khrulev, International Motor Bureau, Shkilna str., 15, Nemishaeve, Kyiv region, 07853, Ukraine

Ph.D., Senior Researcher, forensic expert

Olexii Saraiev, Kharkiv National Automobile and Highway University,25, Yaroslava Mudrogo str., Kharkiv, Ukraine, 61002

Doctor of Technical Sciences, Professor

Department of Cars

Irina Saraieva, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

Ph.D., Assoc. Professor

References

Denton T. (2006). Advanced Automotive Fault Diagnosis. Second edition. Oxford: Elsevier But-terworth-Heinemann. 271.

Gilles T. (2011). Automotive Engines: Diagnosis, Repair and Rebuilding, 6th Edition. Delmar: Cen-gage Learning. 734.

Maurya R.K. (2019). Reciprocating Engine Com-bustion Diagnostics In-Cylinder Pressure Meas-urement and Analysis. Cham: Springer Nature Switzerland AG. 616.

Halderman J.D. (2012). Automotive Technology. Principles, Diagnosis, and Service. Fourth edition. New Jersey: Pearson Education Inc. 1652.

Garage Lube (n.d.). Pressure School. Part 2: A Running Diagnosis by Pico Technology. Retrieved from https://www.garagelube.com/online-training/ pressure-school-part-2-running-diagnosis/.

Garage Lube (n.d.). Pressure School. Part 1: Intro-duction to the Pressure Transducer by Pico Tech-nology. Retrieved from https://www. garage-lube.com/online-training/pressure-school-part-1-introduction-pressure-transducer/.

Burrows J.A. (1998). An investigation into the cold start performance of automotive diesel en-gines. Thesis submitted to the University of Not-tingham for the degree of Doctor of Philosophy. Nottingham. 224.

Pacaud P., Perrin H., Laget O. (2008). Cold Start on Diesel Engine: Is Low Compression Ratio Compatible with Cold Start Requirements? SAE International Journal of Engines. 20. DOI: https://doi.org/10.4271/2008-01-1310

Roberts A., Brooks R., Shipway Ph. (2014). Inter-nal combustion engine cold-start efficiency: A re-view of the problem, causes and potential solu-tions. Energy Conversion and Management. 82. 327–350. DOI: http://dx.doi.org/10.1016/j. en-conman.2014.03.002.

Kurtyka K., Pielecha J. (2020). Cold start emis-sions from a gasoline engine in RDE tests at dif-ferent ambient temperatures. Combustion En-gines. 181(2). 24-30. DOI: https://doi.org/10. 19206/CE-2020-204

Reißig M. (2012). Modeling the Cold Start Pro-cess of Spark Ignition Engines. Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur (Dr.-Ing.) der Fakultat fur Maschinen-bau und Schiffstechnik der Universitat Rostock. Lehrstuhl fur Technische Thermodynamik, Uni-versitat Rostock. 133.

Stotsky A.A. (2009). Automotive Engines. Con-trol, Estimation, Statistical Detection. Springer-Verlag Berlin, Heidelberg. 215.

Сараєва І.Ю., Хрулєв О.Е., Воробйов О.М. (2022). Розробка математичних критеріїв оцін-ки якості діагностування циліндро-поршневої групи двигуна автомобіля. Автомобіль і елект-роніка. Сучасні технології. Вип. 22. 92-103. Saraieva I., Khrulev A., Vorobiov O. (2022). Rozrobka matematychnykh kryteriiv otsinky yakosti diahnostuvannia tsylindro-porshnevoi hrupy dvyhuna avtomobilia. [Development of mathematical criteria for assessing the quality of diagnosing the cylinder-piston group of a car en-gine.] Vehicle and electronics. Innovative tech-nologies, Vol. 22. 92-103. DOI: https://doi.org/10.30977/VEIT.2022.22.0.10 [in Ukrainian]

Сараєва І.Ю., Хрулєв О.Е., Воробйов О.М., Себко Д.П. (2020). Цифрова діагностика для визначення герметичності камери згоряння двигуна автомобіля. Автомобіль і електроніка. Сучасні технології, Вип. 18. 52-64. Saraieva I., Khrulev A., Vorobiov O., Sebko D. (2020). Tsyfrova diahnostyka dlia vyznachennia her-metychnosti kamery zghoriannia dvyhuna avto-mobilia. [Digital diagnostics for determining the tightness of the combustion camera of the car en-gine.] Vehicle and electronics. Innovative tech-nologies, 2020, Vol. 18, 52-64. DOI: https://doi.org/10.30977/VEIT.2020. 18.0.52 [in Ukrainian]

Pszczółkowski, J. (2022). The model for cylinder charge parameters during engine starting. Com-bustion Engines. 188(1). 60-66. DOI: https://doi.org/10.19206/CE-142029

Bellér, G., Árpád, I., Kiss, J.T., Kocsis, D. (2021). AVL Boost: a powerful tool for research and edu-cation. Journal of Physics: Conference Series. 1935 (1). 012015. 9. DOI: https://doi.org/ 10.1088/1742-6596/1935/1/012015

Cordon, D., Dean, Ch., Steciak, J., Beyerlein, S. (2007). One-Dimensional Engine Modeling and Validation using Ricardo WAVE. Final Report KLK434-B, N07-09. National Institute for Ad-vanced Transportation Technology, University of Idaho. 45. Retrieved from https://www. academ-ia.edu/18805887/ONE_DIMENSIONAL_ ENGINE_MODELING_AND_VALIDATION_ USING_RICARDO_WAVE

Magdas, V.B., Mastan, D.C., Burnete, N. (2020). Simulation possibilities of the internal combus-tion engine management elements using Lotus Engine Simulation software. IOP Conference Se-ries: Materials Science and Engineering. 997 (1). 012121. 11. DOI: https://doi.org/10.1088/1757-899x/997/1/012121

Khrulev A., Saraiev O. (2022). Building a mathe-matical model of the destruction of a connecting rod-piston group in the car engine at hydraulic lock. Eastern-European Journal of Enterprise Technologies. 3. 7 (117). 40–49. DOI: https://doi.org/ 10.15587/1729-4061.2022.259454

Medina A., Curto-Risso P.L., Hernández A.C., Guzmán-Vargas L., Angulo-Brown F., Sen A.K. (2014). Quasi-Dimensional Simulation of Spark Ignition Engines. From Thermodynamic Optimi-zation to Cyclic Variability. Springer-Verlag, London. 195.

Blair G.P. (1999). Design and Simulation of Four-Stroke Engines. Warrendale, Society of Automo-tive Engineers, Inc. 815.

Gupta, H.N. (2012). Fundamentals of Internal Combustion Engines. PHI Learning Pvt. Ltd., 676.

Kalikatzarakis M., Coraddu A., Theotokatos G. and Oneto L. (2021). Development of a zero-dimensional model and application on a medium-speed marine four-stoke diesel engine. Proceed-ings of MOSES2021 Conference. 3rd International Conference on Modelling and Optimisation of Ship Energy Systems. 11. Retrieved from https://www.researchgate.net/publication/ 352119154

Fygueroa S., Villamar C., Fygueroa O. (2016). Thermodynamic Study of the Working Cycle of a Direct Injection Compression Ignition Engine. In-ternal Combustion Engines. Second Edition. Edit-ed by K. Lejda and P. Woś. IntechOpen. 75-112. DOI: http://dx.doi.org/10.5772/50028

Heywood J.B. (2018). Internal Combustion Engine Fundamentals. Second Edition. New York, McGraw-Hill Education. 1056.

Kastner L.J., Williams T.J., White J.B. (1963-64). Poppet Inlet Valve Characteristics and their Influ-ence on the Induction Process. Proc.Instn. Mech.Engrs. Vol.178 Pt.l. No. 36 955-975. DOI: https://doi.org/10.1177/0020348363178001137

Khrulev A. (2023). Analysis of pneumatic cata-pult launch system parameters, taking into ac-count engine and UAV characteristics. Advanced UAV. 3 (1). 10–24. Retrieved from https://publish. mer-sin.edu.tr/index.php/uav/article/view/1045

Lanlege D.I., Kehinde R., Sobanke D.A., Garba U.M. (2018). Comparison of Euler and Range-Kutta methods in solving ordinary differential equations of order two and four. Leonardo Journal of Sciences. Issue 32. 10-37. Retrieved from https://www.researchgate.net/publication/331993886_Comparison_of_Euler_and_Range-Kutta_ meth-ods_in_solving_ordinary_differential_equations_of_order_two_and_four

Khrulev A., Dmitriev S. (2019). Study of the conrod deformation during piston interaction with liquid in the internal combustion engine cylinder. Journal of Mechanical Engineering and Sciences. Vol. 14. Issue 2. 6557-6569. Retrieved from https://journal.ump.edu.my/jmes/article/view/18200515

Published

2024-06-11

How to Cite

Khrulev, A., Saraiev, O., & Saraieva, I. (2024). Method for expert evaluation of the technical con-dition of the cylinder-piston group of automotive engines after hydrolock. Vehicle and Electronics. Innovative Technologies, (25), 63–70. https://doi.org/10.30977/VEIT.2024.25.0.7

Issue

Section

MODELING APPLIED TASKS IN AUTOMOBILE INDUSTRY AND TRANSPORT SYSTEMS