Simulation of а car parameters impact on the process of its acceleration

Authors

  • Oleksandr Osetrov National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., 61002, Kharkiv, Ukraine, Ukraine https://orcid.org/0000-0002-5495-9626
  • Bohdan Chuchumenko National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., 61002, Kharkiv, Ukraine, Ukraine

DOI:

https://doi.org/10.30977/VEIT.2021.20.0.05

Keywords:

car dynamics, receptivity, mathematical modeling, drive unit, car parameters, load

Abstract

Goal. The purpose of the work is mathematical modeling of Daewoo Lanos passenger car acceleration dynamics. Methodology. The mathematical model is based on the methodology of E.A. Chudakov and N.A.Yakovlev. According to this method, the main factor that determines the current value of vehicle acceleration at an elementary speed section is the dynamic factor. This factor depends on the traction force, the air resistance force and the weight of the vehicle. The paper proposes formulas for determining the dynamic factor and parameters of vehicle acceleration at an elementary speed section, where gear shift takes place. The model is implemented in the MATLAB software environment. The software product allows to determine the parameters of the car during acceleration to the maximum speed when the engine is running at the external speed characteristic modes. Results Based on the results of mathematical modeling for the Daewoo Lanos car, the loads arising in the drive of the car were analyzed. It is shown that the tractive effort is mainly spent on overcoming the inertial forces, which at the beginning of the movement exceed the resistance forces of the road and air by more than 50 times. With an increase in the vehicle speed, the inertia force decreases and at a speed of 100 km / h it is only twice the other load components. It is shown that with the accepted initial data, the Daewoo Lanos car accelerates to 100 km/h in 17.7 s, which corresponds to the experimental data. The influence of the mass of the car, the rated power of the engine, the mode and time of gear shifting, the radius of the wheels, the height of the car, the coefficient of aerodynamic drag on the dynamics of acceleration of the car is analyzed. It was revealed that the vehicle weight and the nominal power of the engine affect the dynamics of acceleration from 0 to 100 km/h to the greatest extent. The influence of other parameters in the indicated speed range is not somewhat significant. The explanation of the obtained results is given. Practical value. The mathematical model presented in the work allows to determine the parameters of the engine and the car during acceleration, take into account the influence of the design and adjusting parameters of the engine and the car on these indicators, and carry out optimization studies.

Author Biographies

Oleksandr Osetrov , National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., 61002, Kharkiv, Ukraine

Ph.D., associate professor, Department of Internal Combustion Engines

Bohdan Chuchumenko, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., 61002, Kharkiv, Ukraine

graduate student, Department of Internal Combustion Engines

References

Uffelmann F. (1984). Autolin-bin digitales. Simulation srechen-programm fur die Fabirdynamik von Personenkzaft-vagen. Automobiltechnik zeitschrift, ATZ, 86(2), 41-46.

Иванников, С. В., Родионов Г.Л. & Сидоренко А.С. (2005). О построении математической модели движения автомобиля. Электронный журнал «Труды МАИ», 18, 1-18. Ivannikov, S., Rodionov G., Sidorenko A. (2005). O postroenii matematicheskoy modeli dvizheniya avtomobilya. [On the construction of a mathematical model of vehicle motion], electronic journal «Trudy MAI», 18, 1-18. [in Russian]

Thanh. V. & Ta M. (2015) A Universal Dynamic and Kinematic Model of Vehicles. IEEE Vehicle Power and Propulsion Conference (VPPC)( October 19-22, 2015, Montreal, QC), 1-6. doi: 10.1109/VPPC.2015.7352889.

Тарасик, В.П. & Пузанова О.В. (2019). Методика моделирования ездового цикла автомобиля. Вестник Белорусско-Российского университета, 4 (65), 75-86. Tarasik V. & Puzanova О. (2019). Metodika modelirovaniya ezdovogo cikla avtomobilya. [Modeling technique for the vehicle driving cycle]. Vestnik Belorussko-Rossijskogo universiteta, 4 (65), 75-86. [in Russian]

Тарасик В.П. (2017). Математическое моделирование прямолинейного движения автомобиля. Вестник Белорусско-Российского университета, 2 (55). Tarasik V. (2017). Matematicheskoe modelirovanie pryamolinejnogo dvizheniya avtomobilya. [Mathematical modeling of vehicle’s linear motion]. Vestnik Belorussko-Rossijskogo universiteta, 2 (55). [in Russian]

Забавников, Н.А. (1961). Аналитическое определение времени и пути разгона. Автомобильная промышленность, 6, 11-14. Zabavnikov, N. (1961) Analiticheskoe opredelenie vremeni i puti razgona. [Analytical determination of the time and path of acceleration]. Automotive industry, 6, 11-14. [in Russian]

Стуканов В.А. (2005). Основы теории автомобильных двигателей и автомобиля. Учебное пособие. – М:ФОРУМ: ИНФРА-М, 368.

Stukanov V. (2005) Osnovi teorii avtomobilnyih dvigateley i avtomobilya. Uchebnoe posobie. [Fundamentals of the automobile engines and automobiles theory. Tutorial]. FORUM: INFRA-M, Moscow, 368. [in Russian]

Галимзянов, Р.К. (1998). Тяговый расчет автомобиля с механической трансмиссией. Учебное пособие. Челябинск: Издательство ЮУрГУ, 41. Galimzyanov, R. (1998), Tyagovyiy raschet avtomobilya s mehanicheskoy transmissiey. Uchebnoe posobie. [Traction calculation of a car with a mechanical transmission. Tutorial]. Publishing House YUUrGU, Chelyabinsk, 41. [in Russian]

Нагайцев, М.В. (2003). Метод прогнозирования режимов работы ступенчатой коробки передач транспортной машины с системой автоматического переключения (Дис. канд. техн. наук). МГТУ им. Н.Э. Баумана, Москва.

Nagaytsev, M. (2003), Metod prognozirovaniya rezhimov rabotyi stupenchatoy korobki peredach transportnoy mashinyi s sistemoy avtomaticheskogo pereklyucheniya. [The method of forecasting the operating modes of a stepped gearbox of a transport machine with an automatic switching system]. Bauman MSTU, Moscow. [in Russian]

Прасолов, Н.С. (2004). Обоснование режимов переключения в автомобильной коробке передач с изменяемым межосевым расстоянием зубчатых зацеплений. (Дис. канд. техн. наук) Южно-Уральский Государственный Университет, Челябинск. Prasolov, N. (2004). Obosnovanie rezhimov pereklyucheniya v avtomobilnoy korobke pe-redach s izmenyaemyim mezhosevyim rasstoyaniem zubchatyih zatsepleniy. [Justification of the modes of switching in an automobile gearbox with a variable center distance of gearing]. South Ural State University. Chelyabinsk. [in Russian]

Юсупов А.А. (2013). Совершенствование тягово-динамического расчета автомобиля путём учета процесса переключения передач и управления двигателем. (Дис. канд. техн. наук) Южно-Уральский Государственный Университет, Челябинск. Yusupov А. (2013) Sovershenstvovanie tyagovo-dinamicheskogo rascheta avtomobilya putyom ucheta processa pereklyucheniya peredach i upravleniya dvigatelem. [Improving the traction-dynamic calculation of the car by taking into account the process of gear shifting and engine control]. South Ural State University. Chelyabinsk. [in Russian]

Published

2021-11-30

How to Cite

Osetrov , O., & Chuchumenko, B. (2021). Simulation of а car parameters impact on the process of its acceleration. Vehicle and Electronics. Innovative Technologies, (20), 45–53. https://doi.org/10.30977/VEIT.2021.20.0.05

Issue

Section

MODELING APPLIED TASKS IN AUTOMOBILE INDUSTRY AND TRANSPORT SYSTEMS