Structure of adaptive resonant model of managing the quality of city public passenger transportation

Authors

Keywords:

city public transport, quality of transport services, integrated management, identification and structural analysis

Abstract

Problem. The need to develop and implement city passenger transport management systems is explained by the current trend to account the integrated efficiency of technological processes implementation within enterprises, transport infrastructure and socio-ecological environment. Also, the assessment of management efficiency should reflect the list of requirements to social significance of public transportation quality. The introduction of city passenger transport management system is a complex task that requires development and formalization of the apparatus for identification and structural multilevel analysis of the quality of public transportation as a fundamental tool for assessing its effectiveness. Methodology. By adapting the principles of identification and structural analysis to syntactic structural models of describing the quality of transportation and establishing the basic production connection of its change, a set of instrumental directions for city public passenger transport management is stressed through formalization of processes within the basic levels of their evaluation. Identification and structural analysis of city passenger transport means establishing a general algorithm for forming a hierarchy of problematic tasks of ensuring the quality of transportation and find effective measures to solve them in a multivariate management. The formed structure of the complex adaptive resonant model of passenger transport management is based on establishing the classification signs of public transportation quality and contains the basic layers of comparison and recognition of conditions for its maintenance. Originality. The situational and structural approach is offered as an invariant basis for the system analysis of difficult objects when implementing the principles of complex management of city passenger transport. It is proposed to approach the choice of the structural modeling apparatus that satisfies the selected requirements of the strategic management of city passenger transport from the standpoint of the possibilities of syntactic formalization of descriptions of its levels and the tasks of identification and structural analysis. Practical value. Based on the principles of adaptive resonance theory, the structure of the model of multilevel coordination of local control parameters is developed and a sequence of their quantitative comparative evaluation is formed according to the basic units corresponding to strategic types of city passenger transport management: improving mobility and quality of transportation, economic incentives, resource efficiency of transport infrastructure, road safety, environmental impact. The developed general structure of the contour of integrated city public transport management allows in prospect to form a model of multilevel coordination of local parameters and is a methodological basis for implementation of automated decision support systems.

Author Biographies

Volodymyr Vdovychenko, Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

doctor of Technical Sciences, Prof. Transport technologies Department

Igor Ivanov, Prat «Zaporizhavtotrans»

PhD, Associate Professor

References

Lee R. J., Sener I. N. (2016). Transportation planning and quality of life: Where do they intersect? Transport policy. 2016. Vol. 48. 146-155.

Горбачев П. Ф., Макаричев О. В., Чижик В. М. (2013). Оценка времени ожидания при различных способах организации движения транспортных средств на маршруте. Автомобильный транспорт, 33. 82-86.

Dixit M., Brands T., van Oort N., Cats O., Hoogendoorn S. (2019). Passenger travel time reliability for multimodal public transport journeys. Transportation Research Record, 2673(2). 149-160.

Wei Z. H., Cai-Liang J. (2005). Theoretical analysis of the interchange passengers in urban transport terminals. Journal of Transportation Systems Engineering and Information Technology, 10. 23-30.

Vdovychenko V. (2018) Influence of reserve of carrying capacity of massage of points is on the sentinel parameters of outage of passenger of transport vehicles. Technology audit and production reserves. 1/2(39). 69-76.

Доля В. К., Лежнева О. І. (2004). Аспекти ефективності пасажирських перевезень. Комунальне господарство міст, (58). 158-163.

Вдовиченко В.О. Оцінка ресурсних можливостей міського пасажирського транспорту. Транспортні системи та технології перевезень. 2014. №8. 35-39.

Tamaki T., Nakamura H., Fujii H., Managi S. (2019). Efficiency and emissions from urban transport: Application to world city-level public transportation. Economic Analysis and Policy, 61. 55-63.

Fan J. L., Wang J. X., Li F., Yu H., Zhang X. (2017). Energy demand and greenhouse gas emissions of urban passenger transport in the Internet era: A case study of Beijing. Journal of Cleaner Production, 165. 177-189.

Mangiaracina R., Perego A., Salvadori G., Tumino A. (2017). A comprehensive view of intelligent transport systems for urban smart mobility. International Journal of Logistics Research and Applications, 20(1). 39-52.

Ferreira M. C., Fontesz T., Costa V., Dias T. G., Borges J. L., e Cunha J. F. (2017). Evaluation of an integrated mobile payment, route planner and social network solution for public transport. Transportation research procedia, 24. 189-196.

Вдовиченко В. О. Структура оцінки ефективності міського громадського пасажирського транспорту з позицій сталого розвитку. Наукові нотатки. 2017. 59. 38-44.

Keller C., Struwe S., Titov W., Schlegel T. Understanding the usefulness and acceptance of adaptivity in smart public transport. International Conference on Human-Computer Interaction. July, 2019. 307-326.

Корягин М. Е. (2011). Равновесные модели системы городского пассажирского транспорта в условиях конфликта интересов. Наука. 139.

Фролова О. Н., Тибалова С. О. (2015). Системный подход к управлению на транспорте. Экономика и управление: анализ тенденций и перспектив развития, (18). 197-202.

Малыгин И. Г., Комашинский В. И., Афонин П. Н. (2015). Системный подход к построению когнитивных транспортных систем и сетей. Научно-аналитический журнал «Вестник Санкт-Петербургского университета Государственной противопожарной службы МЧС России», (4). 68-73.

Щербань А. Б. (2010). Классификация задач идентификационно-структурного анализа. Известия высших учебных заведений. Поволжский регион. Технические науки, (2). 3-12.

References

Lee R. J., Sener I. N. (2016). Transportation planning and quality of life: Where do they intersect? Transport policy. 2016. Vol. 48. 146-155.

Gorbachev P. F., Makarichev O. V., Chizhik V. M. (2013). Otsenka vremeni ozhidaniya pri razlichnyih sposobah organizatsii dvizheniya transportnyih sredstv na marshrute [Waiting time estimation for different methods of route vehicle operation organization]. Avtomobilnyiy transport. 33. 82-86.

Dixit M., Brands T., van Oort N., Cats O., Hoogendoorn S. (2019). Passenger travel time reliability for multimodal public transport journeys. Transportation Research Record, 2673(2). 149-160.

Wei Z. H., Cai-Liang J. (2005). Theoretical analysis of the interchange passengers in urban transport terminals. Journal of Transportation Systems Engineering and Information Technology, 10. 23-30.

Vdovychenko V. (2018) Influence of reserve of carrying capacity of massage of points is on the sentinel parameters of outage of passenger of transport vehicles. Technology audit and production reserves. 1/2(39). 69-76.

Dolia V. K., Lezhneva O. I. (2004). Aspekty efektyvnosti pasazhyrskykh perevezen [Aspects of passenger transportation efficiency]. Komunalne hospodarstvo mist, (58). 158-163.

Vdovychenko V. O. Otsinka resursnykh mozhlyvostei miskoho pasazhyrskoho transportu [Assessment of resource capabilities of urban passenger transport]. Transportni systemy ta tekhnolohii perevezen. 2014. №8. 35-39.

Tamaki T., Nakamura H., Fujii H., Managi S. (2019). Efficiency and emissions from urban transport: Application to world city-level public transportation. Economic Analysis and Policy, 61. 55-63.

Fan J. L., Wang J. X., Li F., Yu H., Zhang X. (2017). Energy demand and greenhouse gas emissions of urban passenger transport in the Internet era: A case study of Beijing. Journal of Cleaner Production, 165. 177-189.

Mangiaracina R., Perego A., Salvadori G., Tumino A. (2017). A comprehensive view of intelligent transport systems for urban smart mobility. International Journal of Logistics Research and Applications, 20(1). 39-52.

Ferreira M. C., Fontesz T., Costa V., Dias T. G., Borges J. L., Cunha J. F. (2017). Evaluation of an integrated mobile payment, route planner and social network solution for public transport. Transportation research procedia, 24. 189-196.

Vdovychenko V. O. Struktura otsinky efektyvnosti miskoho hromadskoho pasazhyrskoho transportu z pozytsii staloho rozvytku [Structure of the evaluation of the efficiency of urban public passenger transport from the standpoint of sustainable development]. Naukovi notatky. 2017. 59. 38-44.

Keller C., Struwe S., Titov W., Schlegel T. Understanding the usefulness and acceptance of adaptivity in smart public transport. International Conference on Human-Computer Interaction. July, 2019. 307-326.

Koryagin M. E. (2011). Ravnovesnyie modeli sistemyi gorodskogo passazhirskogo transporta v usloviyah konflikta interesov [Equilibrium models of the urban passenger transport system in the context of a conflict of interests]. Nauka. 139.

Frolova O. N., Tibalova S. O. (2015). Sistemnyiy podhod k upravleniyu na transporte [Systematic approach to the management of transport]. Ekonomika i upravlenie: analiz tendentsiy i perspektiv razvitiya, (18). 197-202.

Malyigin I. G., Komashinskiy V. I., Afonin P. N. (2015). Sistemnyiy podhod k postroeniyu kognitivnyih transportnyih sistem i setey [Systematic approach to building cognitive transport systems and networks]. Nauchno-analiticheskiy zhurnal «Vestnik Sankt-Peterburgskogo universiteta Gosudarstvennoy protivopozharnoy sluzhbyi MChS Rossii, (4). 68-73.

Scherban A. B. (2010). Klassifikatsiya zadach identifikatsionno-strukturnogo analiza [Classification of problems of identification and structural analysis]. Izvestiya vyisshih uchebnyih zavedeniy. Povolzhskiy region. Tehnicheskie nauki, (2). 3-12.

Published

2021-05-01

How to Cite

Vdovychenko, V., & Ivanov, I. (2021). Structure of adaptive resonant model of managing the quality of city public passenger transportation. Vehicle and Electronics. Innovative Technologies, (19), 60–73. Retrieved from http://veit.khadi.kharkov.ua/article/view/231928

Issue

Section

TRANSPORT INFRASTRUCTURE, DEVELOPMENT OF THE NETWORK OF CHARGE STATIONS FOR ECOMOBILE. INFORMATION AND COMMUNICATION TEC