The model of transfer of atmosphere pollution in roadside vegetation near the highway

Authors

  • Валерий Григорьевич Солодов Kharkov National Automobile and Highway University, Ukraine
  • Андрей Геннадьевич Авершин Kharkov National Automobile and Highway University, Ukraine

DOI:

https://doi.org/10.30977/VEIT.2018.13.0.98

Abstract

The work is devoted to the development of a model and investigation of the process of pollution transfer in the ground layer of a general-purpose motor road with plantations and terrain. As the basis of the model, a long section of a road with a roadside terrain and plantings is considered. Along the axial line of the road, a linear source is assumed, which releases constant impurity consumption along the road. The impurity is transported in the surface layer of the highway in the conditions of the lateral wind curve, alternating relief of the adjacent terrain and roadside plantations of different densities. The model is based on a grid description of the three-dimensional region under consideration. The motion of air continuous medium is described by the Reynolds averaged Navier-Stokes equations. The air continuous medium is assumed to be incompressible, multicomponent, and chemically nonreactive. To model the turbulent transport effects, two-parameter differential turbulence model with wall functions is used as the basis. Simulation of blocking of leaf space and tree branches is performed on the basis of blocking with a porous medium. The Navier-Stokes equations, as well as transport equations for the parameters of the turbulence model, contain source terms in the right-hand parts in the form of a power-law dependence of the velocity modulus in the porosity regions. This model interprets the influence of vegetation as a homogeneous isotropic resistance of a low-inertial volume; the additional terms in the equations of the turbulence model increase the production of turbulence. The study was carried out using the author's software package MTFS®, in which the basic implicit algorithm is provided by the method of variable directions and TVD scheme of 2/3-th order accuracy. The calculations were performed by the method of establishing the flow from a retarded state to a developed steady-state flow in the middle. The flow outside the calculated region was assumed to be completely turbulent, which was determined by the input boundary conditions. The input wind speed profile was used with allowance for the boundary layer. Simulation of impurity distribution for a long rectilinear section was performed and a satisfactory agreement with experimental data was obtained. A study was carried out in areas with a substantially spatial impurity transport structure. It is shown that the slope of the current lines with respect to the axial line of the road facilitates the demolition of the impurity along the road, while the intensity of the vorticity between the plantations decreases in comparison with the two-dimensional model.


Кey words:

highway; roadside vegetation; boundary layer; transfer of pollutants.

Author Biographies

Валерий Григорьевич Солодов, Kharkov National Automobile and Highway University

D.Sc., Prof.

Андрей Геннадьевич Авершин, Kharkov National Automobile and Highway University

Ph.D., Assoc. Prof.

References

Govorushenko N.Ya., Filippov V.V., Velichko G.V. Problemi i metodi otsenki ekologicheskogo i energeticheskogo kachestva avtomobilnix dorog / Avtomatizirovanie technologii CREDO’2000. P. 45-51.

Mochida A., Kimura A., Youshino H., Murakami S., Iwata T. Optimization of tree canopy model for CFD application to local area wind energy prediction. NATO ASI 980064. Flow and Transport. Processes in complex obstructed geometries. May 4-15, 2004, IHM NAS, Kyiv, Ukraine, p. 139-141.

Borrego C., Tchepel O., Costa A., Amorim J., Miranda A. Emission and dispersion modeling of Lisbon air quality at local scale / Atmospheric Environment, 2003.- Vol. 37.- P. 5197-5205.

Thykier-Nielsen S., Roed J. Dispersion as consequence of a detonation of a dirty bomb in an urban area. In: NKS Conference on “Radioactive contamination in urban areas”, Riso, Roskilde, Denmark, May 7-9, 2003/ - P. 135.

Murakami S., Otsuka K., Mochida H., Kataoka H, Kato S., CFD prediction of flow over complex terrain using Local Area Wind Energy Prediction System (LAWEPS). In: Proc. of 11th Int. Conf. On Wind Engineering, Texas. Vol.2. – 2003. - P.2821-2828.

Mărunţălu O., Lăzăroiu G., Manea E., Bondrea D., Robescu L Numerical Simulation of the Air Pollutants Dispersion Emitted by CHP Using ANSYS CFX. World Academy of Science, Engineering and Technology International Journal of Environmental and Ecological Engineering Vol:9, No:9, 2015. - PP.1058-1064.

Hiraoka H. Modeling a Microclimate within Vegetation. NATO ASI 980064. Flow and Transport Processes in complex obstructed geometries. May 4-15, 2004, IHM NAS, Kyiv, Ukraine. - 2004. P.142-145.

Flow and transport with complex Obstructions/ Applications to Cities. Vegetative Canopies and Industry/ Editors Ye. Gayev, Julian Hunt. Springer Publ.- 2007. - 414p.

Addepalli B., E.Pardyjak Investigation of the Flow Structure in Step-Up Street Canyons—Mean Flow and Turbulence Statistics. Boundary-Layer Meteorology. -V.148. -2013. P.133–155.

Solodov V. Turbulent flow modeling. Large Eddy Simulation. Kharkiv, HNADU publ., 2011. - 167 p.

Solodov, V., Starodubtsev, Yu. The Scientific Application Software MTFS® for Calculation of 3D Viscous Turbulent Liquid and Gas Flows in Arbitrary Shape Domains, Certificate of State Registration, Ukrainian State Agency of Copyrights and Related Rights, No. 5921, 07.16.2002.

Vargaftik V.B. Handbook of thermophysical properties of gases and liquids. М.: Nauka, 1972. - 720p.

Solodov V., Filippov V., Jdaniuk V. Kiyasko I. Маtемаtiche modeluvannia zabrudnennia atmosfernogo povitria pridorojnogoо proctoru. Avtoshlahovik Ukraini - 2009. - №3. P.42-47.

Пристатейна бібліографія ДСТУ

Говорущенко Н. Я. Проблемы и методы оценки экологического и энергетического качества автомобильных дорог/ Н. Я. Говорущенко, В. В. Филиппов, Г. В. Величко /Автоматизированные технологии CREDO’2000. - С. 45-51.

Mochida A. Optimization of tree canopy model for CFD application to local area wind energy prediction/ A.Mochida, A.Kimura, H.Youshino, S.Murakami, T.Iwata / NATO ASI 980064. Flow and Transport Processes in complex obstructed geometries. May 4-15, 2004, IHM NAS, Kyiv, Ukraine. P. 139-141.

Borrego C. Emission and dispersion modeling of Lisbon air quality at local scale / C.Borrego, O.Tchepel, A.Costa, J.Amorim, A.Miranda / Atmospheric Environment, 2003.- Vol. 37.- P. 5197-5205.

Thykier-Nielsen S. Dispersion as consequence of a detonation of a dirty bomb in an urban area / S.Thykier-Nielsen, J.Roed / In: NKS Conference on “Radioactive contamination in urban areas”, Riso, Roskilde, Denmark, May 7-9, 2003/ - P. 135.

Murakami S. CFD prediction of flow over complex terrain using Local Area Wind Energy Prediction System (LAWEPS) / S.Murakami, K.Otsuka, H.Mochida, H.Kataoka, S.Kato / in: Proc. of 11th Int. Conf. On Wind Engineering, Texas. Vol. 2. – 2003. - P. 2821-2828.

Mărunţălu O. Numerical Simulation of the Air Pollutants Dispersion Emitted by CHP Using ANSYS CFX / O.Mărunţălu, G.Lăzăroiu, E.Manea, D.Bondrea, L.Robescu / World Academy of Science, Engineering and Technology International Journal of Environmental and Ecological Engineering Vol:9, No: 9, 2015. - PP. 1058-1064.

Hiraoka H. Modeling a Microclimate within Vegetation. NATO ASI 980064. Flow and Transport Processes in complex obstructed geometries. May 4-15, 2004, IHM NAS, Kyiv, Ukraine. - 2004. P. 142-145.

Flow and transport with complex Obstructions/ Applications to Cities. Vegetative Canopies and Industry/ Editors Ye. Gayev, Julian Hunt. Springer Publ.- 2007. - 414 p.

Addepalli B. "Investigation of the Flow Structure in Step-Up Street Canyons—Mean Flow and Turbulence Statistics"/ B.Addepalli, E.Pardyjak / Boundary-Layer Meteorology. -V. 148. - 2013. P. 133–155.

Солодов В. Г. Моделирование турбулентных течений. Расчет больших вихрей. Харків, вид-во ХНАДУ, 2011. - 167 с.

Солодов В. Г. Научно-прикладной программный комплекс MTFS® для расчета трехмерных вязких турбулентных течений жидкостей и газов в областях произвольной формы. / В. Г. Солодов, Ю. В. Стародубцев / Сертификат гос. регистр. авт. прав, УГААСП, № 5921, 07.16.2002.

Варгафтик В. Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972. - 720 с.

Солодов В.Г. Математичне моделювання забруднення атмосферного повітря придорожнього простору / В.Г.Солодов, В. В. Філіппов, В. К. Жданюк, И. В. Кияшко / Автошляховик України/ - 2009. №3. C.42-47.

Published

2018-05-16

How to Cite

Солодов, В. Г., & Авершин, А. Г. (2018). The model of transfer of atmosphere pollution in roadside vegetation near the highway. Vehicle and Electronics. Innovative Technologies, (13), 98–107. https://doi.org/10.30977/VEIT.2018.13.0.98

Issue

Section

MODELING APPLIED TASKS IN AUTOMOBILE INDUSTRY AND TRANSPORT SYSTEMS