Optimized control system for a booster lithium-iron-phosphate battery
DOI:
https://doi.org/10.30977/VEIT.2024.26.0.1Keywords:
lithium-iron-phosphate batteries, battery management system, optimization of charging and discharging processes, reliability of battery systems, stable power supplyAbstract
Problem. Conventional lead-acid batteries suffer from significant limitations such as low energy density, reduced reliability over time, and inefficiency under challenging conditions like low temperatures and deep discharge. These limitations highlight the necessity of more efficient, lightweight, and durable alternatives for applications like starting internal combustion engines (ICE) and providing backup power. Methodology. This research focuses on designing and testing an optimized battery management system (BMS) for lithium-iron-phosphate (LiFePO₄) batteries. Key performance parameters, including voltage, current, and temperature, were analyzed. An advanced electronic control unit was developed to regulate charging and discharging processes, with a focus on internal resistance management and cell balancing. Experimental validation was performed under various conditions, including low temperatures and heavy loads, to ensure robust performance. Results. The developed system demonstrated superior reliability, reduced charging times, and longer lifespan compared to conventional batteries. The optimized BMS ensured stable energy output, effectively balancing the charge and managing internal resistance. This system provided consistent performance even under extreme conditions, making it more cost-effective and durable. Originality. This study introduces a novel approach to controlling LiFePO₄ battery systems using advanced BMS technology, addressing specific challenges in ICE startups and auxiliary power applications. It integrates enhanced temperature management, internal resistance monitoring, and charge balancing, providing a tailored solution for demanding environments. Practical value. The findings have practical implications for improving energy efficiency and reliability in automotive and other industries. The enhanced performance and extended lifespan of LiFePO₄ batteries make them ideal for critical applications, such as renewable energy storage and backup power systems, supporting the broader adoption of sustainable energy technologies.
References
Uchendu, I., Xiao, T., Lu, Y., Zhu, B., Yan, M., Simon, J., Bennice, M., Fu, C., Ma, C., & Jiao, J. (2023). Jump-start reinforcement learning. In-ternational Conference on Machine Learning, 34556–34583. https://proceedings.mlr.press/v202/uchendu23a.html
Prudius, T. Y., Gutsol, A. V., Gutsol, N. V., & Mysenko, O. O. (2021). Globigen Jump Start usage as a replacer for blood plasma in pre-starter feed for piglets. Scientific Messenger of LNU of Veterinary Medicine and Biotechnolo-gies. Series: Agricultural Sciences, 23(94), 111–116.
Torrealba, J. (2020). Autonomous cell-based LiFePO4 battery management system for solar photovoltaic applications. https://islandscholar.ca/islandora/object/ir%3A23559/datastream/PDF/view
Rovianto, E., Khairunnisa, B. W. L., Fardan, M. F., Harsito, C., & Prasetyo, A. (2024). Balanc-ing the charge: The evolution of battery active equalizers in shaping a sustainable energy storage future. International Journal of Power Electronics and Drive Systems (IJPEDS), 15(3), 1687–1710.
Arhun, S., Hnatov, A., Hnatova, H., Patlins, A., & Kunicina, N. (2020). Problems that have arisen in universities in connection with COVID-19 on the example of the Double De-gree Master’s Program “Electric Vehicles and Energy-Saving Technologies.” 1–6. https://doi.org/10.1109/RTUCON51174.2020.9316601
Bogajevskiy, A., Arhun, S., Hnatov, A., Dvad-nenko, V., Kunicina, N., & Patlins, A. (2019, October 7). Selection of Methods for Modern-izing the Regulator of the Rotation Frequency of Locomotive Diesels. 2019 IEEE 60th Inter-national Scientific Conference on Power and Electrical Engineering of Riga Technical Uni-versity (RTUCON). https://doi.org/10.1109/RTUCON48111.2019.8982347
Arhun, S., Borodenko, Y., Hnatov, A., Popova, A., Hnatova, H., Kunicina, N., Ziravecka, A., Zabasta, A., & Ribickis, L. (2020). Choice of Parameters for the Electrodrive Diagnostic System of Hybrid Vehicle Traction. Latvian Journal of Physics and Technical Sciences, 57(4), 3–11. https://doi.org/10.2478/lpts-2020-0017
Borodenko, Y., Ribickis, L., Zabasta, A., Arhun, S., Kunicina, N., Zhiravetska, A., Hnatova, H., Hnatov, A., Patlins, A., & Kunicins, K. (2020). Using the method of the spectral analysis in di-agnostics of electrical process of propulsion systems power supply in electric car. Przeglad Elektrotechniczny, 96(10), 47–50. https://doi.org/10.15199/48.2020.10.08
Hnatov, A., Arhun, S., Dziubenko, O., & Poni-karovska, S. (2018). Choice of electric engines connection circuits in electric machine unit of electric power generation device. Majlesi Journal of Electrical Engineering, 12(4), 85–93.
Hnatov, A., Patlins, A., Arhun, S., Kunicina, N., Hnatova, H., Ulianets, O., & Romanovs, A. (2020). Development of an unified energy-efficient system for urban transport. 2020 6th IEEE International Energy Conference (EN-ERGYCon), 248–253. https://doi.org/10.1109/ENERGYCon48941.2020.9236606
Patlins, A., Hnatov, A., & Arhun, S. (2018). Using of green energy from sustainable pave-ment plates for lighting bikeways. 2018-Octob-3–5, 574–579. https://ortus.rtu.lv/science/en/publications/27845
Klets, D., Gritsuk, I. V., Makovetskyi, A., Bul-gakov, N., Podrigalo, M., Kyrychenko, I., Vol-ska, O., & Kyzminec, N. (2018). Information Security Risk Management of Vehicles. SAE Technical Papers, 2018-April. Scopus. https://doi.org/10.4271/2018-01-0015
König, A., Nicoletti, L., Schröder, D., Wolff, S., Waclaw, A., & Lienkamp, M. (2021). An Over-view of Parameter and Cost for Battery Electric Vehicles. World Electric Vehicle Journal, 12(1), Article 1. https://doi.org/10.3390/wevj12010021
Thangavel, S., Mohanraj, D., Girijaprasanna, T., Raju, S., Dhanamjayulu, C., & Muyeen, S. M. (2023). A Comprehensive Review on Elec-tric Vehicle: Battery Management System, Charging Station, Traction Motors. IEEE Ac-cess, 11, 20994–21019. IEEE Access. https://doi.org/10.1109/ACCESS.2023.3250221
Tran, M.-K., DaCosta, A., Mevawalla, A., Pan-chal, S., & Fowler, M. (2021). Comparative study of equivalent circuit models perfor-mance in four common lithium-ion batteries: LFP, NMC, LMO, NCA. Batteries, 7(3), 51.
Wang, Y., Tian, J., Sun, Z., Wang, L., Xu, R., Li, M., & Chen, Z. (2020). A comprehensive re-view of battery modeling and state estimation approaches for advanced battery management systems. Renewable and Sustainable Energy Reviews, 131, 110015.
Gabbar, H. A., Othman, A. M., & Abdussami, M. R. (2021). Review of battery management systems (BMS) development and industrial standards. Technologies, 9(2), 28.
Пристрій для автомобіля PowerMe Jump Starter (PWM-JS1000)—BERI.UA. Інтернет-магазин. (2024, June 5). Prystrii dlia avtomo-bilia PowerMe Jump Starter (PWM-JS1000)—BERI.UA [Device for the car PowerMe Jump Starter (PWM-JS1000)—BERI.UA]. Internet-mahazyn. (2024, June 5). https://beri.ua/puskovoe-ustroistvo-dlia-avtomobylia-powerme-jump-starter-pwm-js1000/ [Ukrainian]
Downloads
Published
How to Cite
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
3. Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи.