Evaluation of the possibility of using mathematical models for expert research of car engine damage

Authors

DOI:

https://doi.org/10.30977/VEIT.2022.21.0.06

Keywords:

car, engine, operation, damage, expertise, model, calculation

Abstract

Problem. The problem of expert assessment of damage to engine parts, especially its mechanisms, which work in conditions of malfunctions of the car is a difficult task. Such an assessment requires certain qualifications, special equipment, is quite expensive and is subjective. The use of mathematical models in conducting such research should improve the objectivity of the expert's opinion. To do this, the paper identifies mathematical models, which are the basis of an improved expert method for estimating engine damage. These models under certain conditions of application allow to solve the inverse problem of destruction of details of the engine mechanism. Previously, such models were used in the design of the engine in the absence of violations of the car. Modeling in the practice of expert research is designed to improve their informational and objective components in determining the causes of engine failures due to violations of the operating conditions of the car. Goal. The aim of the work is to use mathematical models in conducting expert studies of engine damage to improve the objectivity of the expert's opinion. Methodology. Methodical materials for determining the causes of engine failures are not enough to solve practical problems. In many cases, the search for the cause of the fault involves time-consuming work on the analysis of numerous possible causes, which is often subjective, highly dependent on the qualifications of the researcher and can lead to erroneous determination of the cause of the fault. Originality. The problem of correct and effective determination of the causes of malfunctions remains an urgent task at all stages of operation of engines. In expert practice, it is customary to use several methods, which include diagnostic, as well as methods based on the analysis of signs of damage to individual parts. Practical value. Serious development of numerical modeling methods used for ICE design tasks has had almost no effect on the methods of modeling various faults, insufficiently developed issues of applicability of known mathematical models to the problem of damage to parts and components of ICE. In fact, modeling methods are not used at all in expert tasks to determine the causes of faults.

Author Biographies

Alexander Khrulev, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

Ph. D. (Eng), doctoral student of Automobile Department

Iryna Saraіevа, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

Ph. D. (Eng.), Associate Professor

Oleksandr Vorobiov, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

postgraduate

Andrii Sokhin, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

master

References

MAHLE (2016) Engine Components and Filters: Damage profiles, Probable Causes and Prevention, Technical Information MS3-1109, Farmington Hills, MAHLE Aftermarket Inc., 76.

Missan G.S., Keswani I.P. (2016) Analysis of Causes of Engine Overheating due to Cooling System Failure Using Pareto Principle. – International Journal of Engineering Trends and Technology (IJETT), Volume 36, Number 5, 242–248.

Henning P., Walsh D., Yurko R. et. al. (2017) Predictive Equipment Maintenance. Oil Analysis Handbook. Third Edition. Chelmsford, Spectro Scientific, 120.

Greuter E., Zima S. (2012) Engine Failure Analysis. Internal Combustion Engine Failures and Their Causes. SAE International, 568.

MS Motorservice (2016) Piston damage – Recognizing and rectifying. Service tips & infos. Article No. 50003 973–02. Neuenstadt: MS Motorservice International GmbH, 92.

Khrulev, A.E., Saraiev, O.V. (2021) Local Abrasive Wear in Automobile Internal Combustion Engines. Monograph. LAP LAMBERT Academic Publishing, Chisinau, 70.

Хрулев А.Э., Кочуренко Ю.В. (2017) Методика определения причины неисправности ДВС при тяжелых эксплуатационных повреждениях. Двигатели внутреннего сгорания, №1, 52–60. DOI: 10.20998/0419–8719.2017.1.10. Khrulev A.E., Kochurenko Yu.V. (2017) Metodika opredeleniya prichiny neispravnosti DVS pri tyajelykh ekspluatazhionnykh povrejdeniyakh. Internal combustion engines, No.1, 52-60. DOI: 10.20998/0419–8719.2017.1.10 [in Russian]

Хрулев А.Э. (2020) Методика составления и использования истории транспортных средств при исследовании их технического состояния в задачах определения причин неисправностей узлов и агрегатов. Криміналістика і судова експертиза, Вып. 65, 594-605. DOI: https://doi.org/10.33994/kndise. Khrulev A.E. (2020) Metodika sostavleniya i ispolzovaniya istorii transportnykh sredstv pri issledovanii ikh tekhnicheskogo sostoyaniya v zadachakh opredeleniya prichin neispravnostei uzlov i agregatov. [in Russian]

Khrulev A.E., Saraiev O.V. (2021) The method of expert assessment of the technical condition of an automobile engine after overheating. Автомобільний транспорт, 48, 5-16. DOI: https://doi.org/10.30977/AT.2219-8342.2021.48.0.5.

Dmitriev S.A., Khrulev A.E. (2020) Some aspects of influence of the connecting rod design on the output parameters of high-speed internal combustion engines. Проблеми тертя та зношування, №1(86), 23-37. DOI: https://doi.org/10.18372/0370-2197.1(86).144855.

Laskowski R. (2015) Fault Tree Analysis as a tool for modeling the marine main engine reliability structure. Scientific Journals of the Maritime University of Szczecin, no.41 (113), 71-77.

Хрулев А.Э. (2019) Использование логико-вероятностных методов для определения причин отказов турбокомпрессоров в эксплуатации ДВС, Автомобіль и електроника. Сучасні технології, №16, 5-18. DOI: https://doi.org/10.30977/VEIT.2019.16.0.5. Khrulev A.E., (2019) Ispolzovanie logiko-veroyatnostnykh metodov dlya opredeleniya prichin otkazov turbokompressorov v ekspluatazhii DVS. Vehicle and electronics. Innovative technologies, No.16, 5-18. DOI: https://doi.org/10.30977/VEIT.2019.16.0.5. [in Russian]

MAHLE Clevite (2008) Turbocharger: Damage Profiles, Causes, and Prevention. Technical information MO-2-613. MAHLE Clevite Inc., United States, 16.

Miller J. (2008) Turbo: Real World High-Performance Turbocharger Systems (S-A Design) Pa-perback, CarTech, 160.

Cengel, Yu.A. (2015). Heat and Mass Transfer. Fundamentals and Applications, McGraw–Hill Education New–York, USA, 968.

Онищенко Д.О., Панкратов С.А. (2013) Моделирование теплового состояния крышки цилиндра и клапанов дизеля. Вестник МГТУ им. Н.Э. Баумана. Сер. “Машиностроение”, №4, 94–108. Onischenko D.O., Pankratov S.A. (2013) Modelirovanie teplovogo sostoyaniya kryshki tzilindra i klapanov dizelya. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, No.4, 94–108. [in Russian]

Чайнов Н.Д., Мягков Л.Л., Маластовский Н.С. (2012) Методика расчета согласованных температурных полей крышки цилиндра с клапанами. Вестник МГТУ им. Н.Э. Баумана. Сер. “Машиностроение”, №7, 82–91. Chainov N.D., Myagkov L.L., Malastovskii N.S. (2012) Metodika rascheta soglasovannykh temperaturnykh polei kryshki tzilindra s klapanami. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, No.7, 82-91. [in Russian]

Кабанов А.Н. (2012) Выбор методики расчёта процесса теплоотдачи в газовом двигателе с искровым зажиганием. Автомобильный транспорт, 30, 96-102. Kabanov A.N. (2012) Bybor metodiki rascheta processa teplootdachi v gazovom dvigtele s iskrovym zajiganiem. Automobile transport, No.30, 96-102. [in Russian]

Дьяченко В.Г. (2009) Теория двигателей внутреннего сгорания. Харьков, ХНАДУ, 500. Diachenko V.G. (2009) Teoriya dvigatelei vnutrennego sgoraniya. Kharkiv, KhNADU, 500. [in Russian]

Левтеров А.М., Левтерова Л.И. (2013) Анализ математических моделей механизма сажеобразования при сжигании углеводородных топлив, Вісник НТУ «ХПІ». Серія: Математичне моделювання в техніці та технологіях, №5 (979), 130–141. Levterov A.M., Levterova L.I. (2013) Analiz matematicheskikh modelei mekhanizma sajeobrazovaniya pri sjiganii uglevodorodnykh topliv. Bulletin NTU KhPI

Series: Mathematical modeling in engineering and technologies, No.5 (979), 130-141. [in Russian]

Van Basshuysen, R., Schäfer, F. (2004). Internal Combustion Engine Handbook: Basics, Components, Systems, and Perspectives. SAE International, Warrendale, 811.

Грехов Л.В., Иващенко Н.А., Марков В.А. и др. (2013) Машиностроение. Энциклопедия. Двигатели внутреннего сгорания. Т.IV–14. Москва. Машиностроение, 784. Grekhov L.V., Ivaschenko N.A., Markov V.A. (2013) Maschinostroenie. Enciklopediya. Dvigateli vnutrennego sgoraniya. Т.IV–14. Moscow. Machinostroenie, 784. [in Russian]

Duleba B. (2014) Simulation of Automotive Engine in Lotus Simulation Tools. Transfer inovacii, No. 30, 48–52.

Lotus Engineering Software (2019). Group Lotus PLC, URL: http://www.lesoft.co (дата обращения 20.10.2019).

Bonnick A. (2008) Automotive Science and Mathematics. Elsevier Linacre House, Burlington, 240.

Феодосьев В.И. (2010) Сопротивление материалов. 15–е изд. Москва, Издательство МГТУ им. Н.Э.Баумана, 560. Feodosiev V.I. (2010) Soprotivlenie materialov. 15 publ. Moscow, Izdatelstvo MGTU im. N.E.Baumana, 560. [in Russian]

Фаворин М.В. (1977) Моменты инерции тел. Справочник. 2–е изд. Москва. Машиностроение, 511. Favorin M.V. (1977) Momenty inertzii tel. Spravochnik. 2 publ. Moscow, Machinostroenie, 511. [in Russian]

ANSYS (2019). ANSYS Free Student Software Downloads. ANSYS, Inc., URL: https://www.ansys.com/academic/free-student-products/(30.09.2021).

ANSYS (2004). Ansys Thermal Analysis Guide, ANSYS Release 9.0, ANSYS, Inc., Canonsburg, 80.

Published

2022-06-29

How to Cite

Khrulev, A., Saraіevа I., Vorobiov, O., & Sokhin, A. (2022). Evaluation of the possibility of using mathematical models for expert research of car engine damage. Vehicle and Electronics. Innovative Technologies, (21), 79–86. https://doi.org/10.30977/VEIT.2022.21.0.06

Issue

Section

EQUIPMENT FOR MANUFACTURE AND REPAIR OF TRANSPORTATION. SERVICE AND TECHNICAL REVIEW OF CARS