Analysis of the most common methods for determining the stability of energy systems

Authors

  • Andrii Hnatov Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine https://orcid.org/0000-0003-0932-8849
  • Shchasiana Arhun Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine https://orcid.org/0000-0001-6098-8661
  • Ruslan Bagach Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine https://orcid.org/0000-0003-0157-5933
  • Hanna Hnatova Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine https://orcid.org/0000-0001-7263-3024
  • Valentina Tarasova Ivan Kozhedub Kharkiv University of Air Force, Sumy 77/79 street, Kharkiv, 61023, Ukraine, Ukraine
  • Oleksandr Ruchka Ivan Kozhedub Kharkiv University of Air Force, Sumy 77/79 street, Kharkiv, 61023, Ukraine, Ukraine

DOI:

https://doi.org/10.30977/VEIT.2021.20.0.02

Keywords:

power system, static characteristics, stability, dynamic characteristics, integral criteria, perturbation forces, power balance

Abstract

Problem. There are many methods for determining the stability of the energy system. In normal operating condition (normal rated mode), the power system must reliably ensure the consumption of electricity of normalized quality. However, in addition to the normal state, there are emergency and transient states caused by various transients. This is due to the fact that the energy system is constantly changing its parameters. Such changes are determined by variations in the amount of power produced and consumed, as well as the changes in system configuration. Goal. The goal is studying the possibilities of various methods of determining the power systems stability and drawing up the general algorithm of actions for maintenance of their stability. Methodology. When determining the stability of energy systems by the Lyapunov method, two methods can be used: the direct method and the first approximation method. Lyapunov direct method refers to differential methods. To conclude about the stability of the system we do not find a general or particular solution of differential equations, but with their help we find a mathematical function, the complete derivative of which over time allows to obtain a conclusion about the stability of the system. Results. Many methods can be used to determine whether a sustainable energy system is stable or not. The most common are the Lyapunov methods and the Moiseev method. It is determined that the direct Lyapunov method refers to differential methods. The application of the direct Lyapunov method for energy problems is limited. Currently, it can be used only for some individual cases. The method of the first approximation (Lyapunov first method) has received wider application in the solution of power problems. When applying this method, which belongs to the group of methods of full integration, the right-hand sides of the equations are decomposed into power series. Originality. It is determined that one of the perspective directions of increasing the efficiency of the mathematical device work is using the methods of the second order in modeling and optimization of operating modes of electric power systems. This allows you to increase the speed and reliability of the convergence of iterative processes. Practical value. Based on the analysis of various existing methods for solving the problems of stability of energy systems, an algorithm of actions is proposed and developed, which will help to solve the problem of stability in practice.

Author Biographies

Andrii Hnatov, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

professor, Doct. of Science, Head of Vehicle Electronics Department

Shchasiana Arhun, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

professor, Doct. of Science, Vehicle Electronics Department

Ruslan Bagach, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

postgraduate, Vehicle Electronics Department

Hanna Hnatova, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

student of the Automobile Faculty

Valentina Tarasova, Ivan Kozhedub Kharkiv University of Air Force, Sumy 77/79 street, Kharkiv, 61023, Ukraine

Ph.D., Assoc. Prof.

Oleksandr Ruchka, Ivan Kozhedub Kharkiv University of Air Force, Sumy 77/79 street, Kharkiv, 61023, Ukraine

Ph.D., Assoc. Prof.

References

Авраменко, В. М. (2018). Устойчивость электроэнергетических систем как задача нелинейной механики. Працi Iнституту Електродинамiки Нацiональноi Академii Наук Украiни, 49, 5–10. Avramenko, V. M. (2018). Ustoichyvost эlektroэnerhetycheskykh system kak zadacha nelyneinoi mekhanyky. [Stability of electric power systems as a problem of nonlinear mechanics.] Pratsi Instytutu Elektrodynamiky Natsionalnoi Akademii Nauk Ukrainy, 49, 5–10. [in Russian]

Матеєнко, Ю. П., & Кравчик, А. С. (2020). Оцінка показників балансової надійності електроенергетичних систем з відновлюваними джерелами енергії. Міжнародний Науково-Технічний Журнал" Сучасні Проблеми Електроенерготехніки Та Автоматики", 145–149. Mateienko, Yu. P., & Kravchyk, A. S. (2020). Otsinka pokaznykiv balansovoi nadiinosti elektroenerhetychnykh system z vidnovliuvanymy dzherelamy enerhii. [Estimation of indicators of balance reliability of electric power systems with renewable energy sources.] Mizhnarodnyi Naukovo-Tekhnichnyi Zhurnal" Suchasni Problemy Elektroenerhotekhniky Ta Avtomatyky", 145–149. [in Ukrainian]

Hnatov, A., Patlins, A., Arhun, S., Kunicina, N., Hnatova, H., Ulianets, O., & Romanovs, A. (n.d.). Development of an unified energy-efficient system for urban transport. 2020 6th IEEE International Energy Conference (ENERGYCon), 248–253.

Abu-Rayash, A., & Dincer, I. (2019). Sustainability assessment of energy systems: A novel integrated model. Journal of Cleaner Production, 212, 1098–1116.

Martín-Gamboa, M., Iribarren, D., García-Gusano, D., & Dufour, J. (2017). A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. Journal of Cleaner Production, 150, 164–174.

Kuleli Pak, B., Albayrak, Y. E., & Erensal, Y. C. (2017). Evaluation of sources for the sustainability of energy supply in Turkey. Environmental Progress & Sustainable Energy, 36(2), 627–637.

Salam, A. (2020). Internet of things in sustainable energy systems. In Internet of Things for Sustainable Community Development. 183–216. Springer.

Razmjoo, A., Ehyaei, M. A., Ahmadi, A., Pazhoohesh, M., Marzband, M., Mansouri Khosravi, M., Shahhoseini, A., & Davarpanah, A. (2019). Implementation of energy sustainability using hybrid power systems, a case study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 1–14.

Popov, M. G., & Lu, Z. (2019). Adaptive emergency control system with an algorithm for rapid assessment of sustainability united energy system. Journal of Physics: Conference Series, 1419(1), 012025.

Patlins, A., Hnatov, A., & Arhun, S. (2018). Using of green energy from sustainable pavement plates for lighting bikeways. Transport Means-Proceedings of the International Conference, 574–579.

Patlins, A., Hnatov, A., & Arhun, S. (2018). Safety of pedestrian crossings and additional lighting using green energy. Transport Means-Proceedings of the International Conference, 527–531.

Patlins, A., Hnatov, A., Kunicina, N., Arhun, S., Zabasta, A., & Ribickis, L. (2018). Sustainable pavement enable to produce electricity for road lighting using green energy. 2018 Energy and Sustainability for Small Developing Economies (ES2DE), 1–2.

Gnatov, A., Argun, S., & Rudenko, N. (2017). Smart road as a complex system of electric power generation. 2017 IEEE First Ukraine Conference on Electrical and Computer Engineering (UKRCON), 457–461.

Shymuk, D., Hnatov, A., Arhun, S., Ponikarovska, S., Mygal, V., & Kunicina, N. (2020). Solving the Problem of Balancing and Complete Compensation of Reactive Power for a Three-Phase Power Supply System. EAI Endorsed Transactions on Energy Web, 7(28).

Armin Razmjoo, A., Sumper, A., & Davarpanah, A. (2020). Energy sustainability analysis based on SDGs for developing countries. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(9), 1041–1056.

Panteli, M., Trakas, D. N., Mancarella, P., & Hatziargyriou, N. D. (2017). Power systems resilience assessment: Hardening and smart operational enhancement strategies. Proceedings of the IEEE, 105(7), 1202–1213.

Wang, M. (2018). Note on the Lyapunov functional method. Applied Mathematics Letters, 75, 102–107.

Денисенко, В. С. (2020). О технической устойчивости множеств траекторий дискретных систем. Известия Высших Учебных Заведений. Математика, 7, 63–75. Denisenko, V. S. (2020). O tehnicheskoy ustoychivosti mnozhestv traektoriy diskretnyih sistem. [On technical stability of sets of trajectories of discrete systems.] Izvestiya Vyisshih Uchebnyih Zavedeniy. Matematika, 7, 63–75. [in Russian]

Wójcik, W., Mazakov, T., Jomartova, S., Ziyatbekova, G., Karymsakova, N., & Tursynbai, A. (2021). The stability interval of the set of linear system. International Journal of Electronics and Telecommunications, 67(2), 155–161.

Mazakov, T., Wójcik, W., Jomartova, S., Karymsakova, N., Ziyatbekova, G., & Tursynbai, A. (2021). The Stability Interval of the Set of Linear System. International Journal of Electronics and Telecommunications, 67.

Hnatov, A., Arhun, S., & Ponikarovska, S. (2017). Energy saving technologies for urban bus transport. International Journal of Automotive and Mechanical Engineering, 14, 4649–4664.

Гнатов, А. В., Аргун, Щ. В., Дзюбенко, О. А., Тарасова, В. В., Левенець, А. О., & Пілявець, О. О. (2018). Енергозбереження в системах електропостачання. Автомобіль і Електроніка. Сучасні Технології, 13, 80–89. Hnatov, A. V., Arhun, Shch. V., Dziubenko, O. A., Tarasova, V. V., Levenets, A. O., & Piliavets, O. O. (2018). Enerhozberezhennia v systemakh elektropostachannia. [Energy saving in power supply systems.] Avtomobil i Elektronika. Suchasni Tekhnolohii, 13, 80–89. [in Ukrainian]

Published

2021-11-30

How to Cite

Hnatov, A., Arhun, S., Bagach, R., Hnatova, H., Tarasova, V., & Ruchka, O. (2021). Analysis of the most common methods for determining the stability of energy systems. Vehicle and Electronics. Innovative Technologies, (20), 17–26. https://doi.org/10.30977/VEIT.2021.20.0.02

Issue

Section

WAYS TO IMPROVE THE ECONOMIC AND ENVIRONMENTAL INDICATORS OF MOTOR VEHICLES. ENERGY SAVING TECHNOLOGIES