Artificial intelligence. Machine learning
DOI:
https://doi.org/10.30977/VEIT.2226-9266.2019.15.0.17Abstract
Problem. In this paper the problems and risks of introducing the provisions of artificial intelligence (AI) into the civilization of humanity are considered. Also the stages of the development of artificial intelligence from the game of checkers and chess through machine learning to deep learning (from 1950 to the present) are considered. Goal. The aim of the work is to review and evaluate the features of machine learning, including deep learning, since these methods of artificial intelligence most actively develop and most fully characterize it. Methodology. Methods of machine learning with and without a teacher, problems of machine learning and a family of algorithms for solving them are considered. Results. It is shown that the current state of development of artificial intelligence in terms of the number of equivalent to neurons, which is used in this case, corresponds to the level of a mouse. Mankind has several decades left to prepare for the ubiquitous spread of robots with artificial intelligence. The difference between a regular program and machine learning is shown. The analysis of the features of machine learning under various schemes has been carried out. Examples of the learning process of the algorithm, types of machine learning, classification of tasks and algorithms are given. The distinction between the problems and the family of algorithms is shown. Comparison of different machine learning algorithms is presented. The scope of machine learning is defined. Examples of the use of Google’s cloud machine learning services are given. It is concluded that instead of creating a program manually using a special set of commands, the algorithm is prepared using a large amount of data. The examples of the use of artificial intelligence in business processes, such as manufacturing and, in particular, engineering, are provided. Originality. The dangers of introducing artificial intelligence are formulated. The areas of applicability of artificial intelligence and machine learning, health and education, preferred for relative safety reasons, are proposed. Practical value. The attention of specialists is drawn to the features of artificial intelligence, which may be important in various areas of human life and activity.
References
Stephen Russo. IBM WW Dir Cognitive City solutions and public safety «Adapting to the Changing Threat Landscape: Security vs Convenience». Матеріали конференції IT Weekend Ukraine 2017-10-09, Київ, Україна.
Haziyev S., Milovanov I. «Machine Learning Design, Demystified». Матеріали конференції IT Weekend Ukraine 2018-09-08, Київ, Україна.
Григоров О. В., Аніщенко Г. О., Стрижак В. В. та ін. Інформаційно-керуючі системи та планування в логістиці матеріальних потоків. Навч. посібник за ред. Григорова О.В. Харків: ХНАДУ, 2018. 448 с.
Schaeffer J., Burch N., Björnsson Y., Ki-shimoto A., Müller M., Lake R., Lu P., Sut-phen S. Checkers Is Solved. Sciencexpress. 317(5844):1518-1522, 2007, P. 1-6.
Levy D., Newborn M. Chess and Computers. Springer-Verlag Berlin-Heidelberg, 1982. 302 p.
Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell (1983), Machine Learning: An Artificial Intelligence Approach, Tioga Publishing Company. 572 p.
Ahlstrand J., Rosander O. Email Classifica-tion with Machine Learning and Word Embeddings for Improved Customer Support. Degree project for master of science in engineering, Blekinge Institute of Technol-ogy, 2017. 52 p.
Eugene L., Caswell I. Making a Manageable Email Experience with Deep Learning. Stan-ford University. 2017. URL: https://www.semanticscholar.org/paper/Making-a-Manageable-Email-Experience-with-Deep-Eu-gene/fc20f10fb877a6ca96f8f14ab22c89777482ad5c#paper-header (дата звернення 20.03.2019).
Гудфеллоу Я., Бенджио И., Курвилль А. Глубокое обучение = Deep Learning. М. : ДМК Пресс, 2017. 652 с.
L. Deng, D. Yu. Deep Learning Methods and Applications. Foundations and Trends in Sig-nal Processing Vol. 7, Nos. 3–4 (2013) 197–387, 2014. 387 p.
Билл Гейтс сравнил искусственный интеллект с ядерным оружием. Let Know, 2019 URL: https://letknow.news/news/bill-geyts-sravnil-iskusstvennyy-intellekt-s-yadernym-oruzhiem-19925.html (дата звернення 19.02.2019).
Какие беды принесет искусственный интеллект в 2019 году. Forum Daily, 2019. URL: https://www.forumdaily.com/kakie-bedy-prineset-iskusstvennyj-intellekt-v-2019-godu/ (дата звернення 19.02.2019).
Искусственный интеллект (ИИ). Artificial intelligence (AI). Tadviser. 2019. URL: http://www.tadviser.ru/index.php/Про-дукт:Искусственный_интеллект_(ИИ,_Artificial_intelligence,_AI) (дата звернення 19.02.2019).
Grigorov O.V., Svirgun V.P. Improving the productivity of utility cranes through opti-mum motion control. Soviet machine science. 1986. 6, P. 25-29. (Scopus).
Grigorov O., Druzhynin E., Strizhak V., Strizhak M., Anishchenko G. Numerical sim-ulation of the dynamics of the system "trolley - load - Carrying rope" In a cable crane. East-ern-European Journal of Enterprise Technol-ogies. 3(7-93), 2018, P. 6-12 (Scopus).
Okun A., Los Y. The controllability function method. UPB Scientific Bulletin, Series D: Mechanical Engineering. 2016. – Vol. 78. Is-sue 3. P. 3-8 (Scopus).
Искусственный интеллект (ИИ). Artificial intelligence (AI). Tadviser. 2019. URL: http://www.tadviser.ru/index.php/Про-дукт:Искусственный_интеллект_(ИИ,_Artificial_intelligence,_AI) (дата звернення 19.02.2019).
References
Stephen Russo. IBM WW Dir Cognitive City solutions and public safety «Adapting to the Changing Threat Landscape: Security vs Convenience». Materialy konferentsii IT Weekend Ukraine 2017-10-09, Kyiv, Ukraina.
Serge Haziyev, Iurii Milovanov. Materialy konferentsii IT Weekend Ukraine 2018-09-08, Kyiv, Ukraina.
Hryhorov O.V., Anishchenko H.O., Stryzhak V.V. ta in. Informatsiino-keruiuchi systemy ta planuvannia v lohistytsi materialnykh potokiv [Information management systems and logistics planning for material flows]. Navch. posibnyk za red. Hryhorova O.V. Kharkiv: KhNADU, 2018. 448 s [in Ukrainian].
Schaeffer J., Burch N., Björnsson Y., Kishimoto A., Müller M., Lake R., Lu P., Sutphen S. Checkers Is Solved. Sciencexpress. 317(5844):1518-1522, 2007, P. 1-6.
Levy D., Newborn M. Chess and Computers. Springer-Verlag Berlin-Heidelberg, 1982. 302 p.
Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell (1983), Machine Learning: An Artificial Intelligence Approach, Tioga Publishing Company. 572 p.
Ahlstrand J., Rosander O. Email Classification with Machine Learning and Word Embeddings for Improved Customer Support. Degree project for master of science in engineering, Blekinge Institute of Technology, 2017. 52 p.
Eugene L., Caswell I. Making a Manageable Email Experience with Deep Learning. Stanford University. 2017. URL: https://www.semanticscholar.org/paper/Making-a-Manageable-Email-Experience-with-Deep-Eugene/fc20f10fb877a6ca96f8f14ab22c89777482ad5c#paper-header (accessed: 20.03.2019)
Gudfellou Ya., Bendzhio I., Kurvill A. Glubokoe obuchenie = Deep Learning. [Deep Learning = Deep Learning] M. : DMK Press, 2017. 652 s [in Russian].
L. Deng, D. Yu. Deep Learning Methods and Applications. Foundations and Trends in Signal Processing Vol. 7, Nos. 3–4 (2013) 197–387, 2014. 387 p.
Bill Geyts sravnil iskusstvennyiy intellekt s yadernyim oruzhiem. [Bill Gates compared artificial intelligence with nuclear weapons] Let Know, 2019. Retrieved from: https://letknow.news/news/bill-geyts-sravnil-iskusstvennyy-intellekt-s-yadernym-oruzhiem-19925.html (accessed: 19.02.2019) [in Russian].
Kakie bedyi prineset iskusstvennyiy intellekt v 2019 godu [What troubles will artificial intelligence bring in 2019]. Forum Daily, 2019. Retrieved from: https://www.forumdaily.com/kakie-bedy-prineset-iskusstvennyj-intellekt-v-2019-godu/ (accessed: 19.02.2019) [in Russian].
Ob iskusstvennom intellekte [About artificial intelligence]. Look at me, 2014. URL: http://www.look-atme.ru/mag/live/14/210449-2014-quotes (accessed: 19.02.2019) [in Russian].
Grigorov O. V., Svirgun V. P. Improving the productivity of utility cranes through optimum motion control. Soviet machine science. 1986. 6, P. 25-29. (Scopus).
Grigorov O., Druzhynin E., Strizhak V., Strizhak M., Anishchenko G. Numerical simulation of the dynamics of the system "trolley - load - Carrying rope" In a cable crane. Eastern-European Journal of Enterprise Technologies. 3(7-93), 2018, P. 6-12 (Scopus).
Okun A., Los Y. The controllability function method. UPB Scientific Bulletin, Series D: Mechanical Engineering. 2016. – Vol. 78. Issue 3. P. 3-8 (Scopus).
Iskusstvennyiy intellekt (II). Artificial intelligence (AI). Tadviser. 2019. Retrieved from: http://www.tadviser.ru/index.php/Продукт:Искусственный_интеллект_(ИИ,_Artificial_intelligence,_AI) (accessed: 19.02.2019) [in Russian].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Отто Володимирович Григоров, Галина Оттівна Аніщенко, Всеволод Вікторович Стрижак, Надія Олександрівна Петренко, Ольга Володимирівна Турчин, Антон Олександрович Окунь, Олег Ернестович Пономарьов
This work is licensed under a Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
3. Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи.