Analysis and development of criteria for the operational efficiency of urban electric buses

Authors

DOI:

https://doi.org/10.30977/VEIT.2024.25.0.2

Keywords:

city electric bus;, autonomous source of electricity;, operational efficiency criteria;, nominal passenger capacity;, energy consumption;, autonomous mileage

Abstract

Problem. Currently, manufacturers and research specialists primarily utilize the amount of autonomous mileage and/or the specific electricity consumption of autonomous DEEs per unit of mileage to describe the general characteristics of urban electric buses. However, the structural mass and the key operational parameter, the nominal passenger capacity, are often disregarded. Therefore, comparing electric buses of the same type with identical dimensional parameters based solely on these criteria is illogical and incorrect. Goal. This study aims to establish criteria for the operational efficiency of urban low-floor electric buses of various types, considering autonomous DEE and their charging or replacement systems. These criteria should account for structural mass and nominal passenger capacity, facilitating a proper comparative assessment and the selection of the most optimal options for use in urban passenger transportation systems. Methodology. Criteria for the operational efficiency of city electric buses of various types are proposed based on an analysis of electricity consumption required for both movement and the operation of heating, ventilation, and air conditioning systems. The criteria consider the mass in the equipped state and the main parameter - nominal passenger capacity. Results. Several operational efficiency criteria for urban electric buses, incorporating mass parameters and passenger capacity, are suggested. The feasibility of their application is demonstrated through a comparison of five sketch projects of electric buses of various types with modern models. Originality. The proposed criteria for the operational efficiency of urban electric buses offer a method for adequately comparing any selected models, regardless of their types and technical specifications. Practical value. The proposed criteria for the operational efficiency of urban electric buses of various types can be beneficial for transport company specialists in selecting suitable rolling stock for specific routes. Additionally, design bureau and scientific and technical center specialists can utilize these criteria during the design process of new urban electric transport models.

Author Biography

Stanislav Voytkiv, Scientific and technical Center "Autopoliprom", 32/24, Zubrivska, str., Lviv, 79066, Ukraine

Cand. of Science, General Designer

References

Андрусенко, С. І., Будниченко В. Б., Подпіснов В. С. (2022). Методика оцінки споживання енергії електробусом та параметрів тягової акумуляторної батареї в умовах експлуатації. Автомобіль і електроніка. Сучасні технології: Електронне наукове спеціалізоване видання, 22. 64–71. Andrusenko, S., Budnychenko, V., & Podpisnov, V. (2022). Metodyka otsinky spozhyvannia enerhii elektrobusom ta parametriv tiahovoi akumuliatornoi batarei v umovakh ekspluatatsii. [Methodology for estimating energy consumption for an electric bus and traction battery parameters in operating conditions.] Vehicle and Electronics. Innovative Technologies, (22), 64–71. https://doi.org/10.30977/VEIT.2022.22.0.8

Verbrugge, B., Hasan M. M., Rasool, Н., Geury, T., El Baghdadi, М. & Hegazy, О. (2021). Smart Integration of Electric Buses in Cities: A Technological Review. Sustainability, 13, 12189. 1–23. https://doi.org/10.3390/su132112189

Abdelaty H. & Mohamed M. (2021). A Prediction Model for Battery Electric Bus Energy Consumption in Transit. Energies, 14, 2824. 1–26. https://doi.org/10.3390/en14102824

Gao, Z., Lin, Z., LaClair, T. J., Liu, C., Li, J.-M., Birky, A. K. & Ward, J. (2017). Battery capacity and recharging needs for electric buses in city transit service. Energy, 122. 588–600. http://dx.doi.org/10.1016/j.energy.2017.01.101

Basma, H., Mansour, С., Haddad, M., Nemer M. & Stabat, P. (2022). Energy consumption and battery sizing for different types of electric bus service. Energy, Elsevier, 239( PE). https://doi.org/10.1016/j.energy.2021.122454

Sadrani, М., Najafi, А., Mirqasemi, R. & Antoniou, С. (2023). Charging strategy selection for electric bus systems: A multi-criteria decision-making approach. Applied Energy, 347(1). https://doi.org/10.1016/j.apenergy.2023.121415

Iclodean, C., Cordos, N. & Todorut, A. (2019). Analysis of the Electric Bus Autonomy Depending on the Atmospheric Conditions. Energies 2019, 12, 4535. 1–23. http://doi.org/10.3390/en12234535.

Weiss, M., Cloos K. C. & Helmers, E. (2020). Energy efficiency trade-offs in small to large electric vehicles. Weiss et al. Environ Sci Eur 32:46. 1–17. https://doi.org/10.1186/s12302-020-00307-8

Gallet, M., Massier, T. & Hamacher, T. Estimation of the energy demand of electric buses based on real-world data for large-scale public transport networks. Energy, 230, 344–356. https://doi.org/10.1016/j.apenergy.2018.08.086

Rogge, M., Wollny, S. & Sauer, D. U. (2015). Fast Charging Battery Buses for the Electrification of Urban Public Transport – A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements. Energies, 8(5), 4587–4606. https://doi.org/10.3390/en8054587

Gis, W., Kruczynski, S., Taubert, S. & Wierzejski, A. (2017). Studies of energy use by electric buses in SORT tests. Engines., 170(3), 135–138. https://doi.org/10.19206/CE-2017-323

Meishner, F. & Sauer, D. U. (2020). Technical and economic comparison of different electric bus concepts based on actual demonstrations in European cities. IET Electrical Systems in Transportation, 10(1), 144–163. https://doi.org/10.1049/iet-est.2019.0014

Basma, H., Haddad, M., Mansour, С., Nemer M. & Stabat, P. (2022).. Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris. Research in Transportation Economics, Elsevier, 95(C). https://doi.org/10.1016/j.retrec.2022.101207

Diaz Vasquez R. A., Flores, M. L. & Espinel E. L (2024). A Multi-Criteria Decision Making TOPSIS Fusion Approach for Selection Best Strategy Charging for Electric Bus Systems. Journal of Intelligent Systems and Internet of Things, 11(01), 65–74. https://doi.org/10.54216/JISIoT.110107

Hodge, C., Jeffers, M., Desai, J., Miller, E. & ShahV. (2019). Surat Municipal Corporation Bus Electrification Assessment Golden, CO: National Renewable Energy Laboratory. Technical Report NREL/TP-5400-73600. https://www.nrel.gov/docs/fy19osti/73600.pdf

Войтків С. В. (2022). Аналіз технічної досконалості міських електробусів різних типів. Автомобіль і електроніка. Сучасні технології: Електронне наукове спеціалізоване видання, 21. 64–78. Voytkiv S. V. (2022). Analiz tekhnichnoi doskonalosti miskykh elektrobusiv riznykh typiv. Avtomobil i elektronika. [Analyzing technical perfection of city electric buses of various types.] Vehicle and Electronics. Innovative Technologies, 21. 64–78. [in Ukrainian].

https://doi.org/10.30977/VEIT.2022.21.0.03.

Войтків С. В. (2021). Методика оптимізації основних технічних параметрів перспективних міських електробусів типу ONC. Автомобіль і електроніка. Сучасні технології: Електронне наукове спеціалізоване видання. Харків : ХНАДУ, 20. 6–16. Voytkiv S. V. (2021). Metodyka optymizatsii osnovnykh tekhnichnykh parametriv perspektyvnykh miskykh elektrobusiv typu ONC [The method of optimizing the main technical parameters of the promising city electric buses of ONC Type.] Vehicle and Electronics. Innovative Technologies, Kharkiv: KhNADU, 20, 6–16. [in Ukrainian]. https://doi.org/10.30977/VEIT.2021.20.0.01

Dancer. Dancer FC75 technical specification. https://dancerbus.com/FC75-EN.pdf

Dancer. Dancer LR530 technical specification. https://dancerbus.com/FC75-EN.pdf

Polish Hydrogen Bus. The future of municipal and metropolitan public transport – clean air for all of us. https://www.nesobus.pl/en/

Published

2024-06-11

How to Cite

Voytkiv, S. (2024). Analysis and development of criteria for the operational efficiency of urban electric buses. Vehicle and Electronics. Innovative Technologies, (25), 13–22. https://doi.org/10.30977/VEIT.2024.25.0.2

Issue

Section

WAYS TO IMPROVE THE ECONOMIC AND ENVIRONMENTAL INDICATORS OF MOTOR VEHICLES. ENERGY SAVING TECHNOLOGIES