Analysis of opportunities to increase the level of active car safety

Authors

  • Maksym Tovstokoryi Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine, Ukraine
  • Andrii Hnatov Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine, Ukraine https://orcid.org/0000-0003-0932-8849

DOI:

https://doi.org/10.30977/VEIT.2023.24.0.8

Keywords:

anti-lock braking system, active safety, adaptive cruise control system, tire pressure control system, active safety systems

Abstract

Problem. Increasing the active safety of automobiles remains an important issue in modern automotive engineering. This study will investigate opportunities to increase the effectiveness and scope of automotive active safety measures. Current active safety measures, while effective, are limited in their ability to address the dynamic and multifaceted nature of hazards on the road. Factors such as human error, changing road conditions, and the emergence of new traffic patterns still pose significant risks. These challenges require a comprehensive analysis of opportunities to increase the effectiveness of active car safety. To address these challenges, novel technologies must be explored, industry collaboration must be encouraged, and adaptable standards must be established to integrate and enhance active safety features in vehicles. Thus, itis essential to identify and capitalize on opportunities for progress in active vehicle safety to reduce traffic crashes and promote safer transportation systems Goal. The overarching goal is to significantly improve the effectiveness and breadth of active safety measures for vehicles. This includes: enhanced protection, proactive risk reduction, technology integration, behavioral adaptation, and regulatory strengthening. Achieving these goals will require a multidisciplinary approach that combines technological innovation, behavioral science, regulatory adaptation, and industry collaboration to create a comprehensive and effective active vehicle safety ecosystem. Methodology. Analytical research methods are used, Researching and developing cutting-edge technologies. Originality. A detailed analysis was carried out and the principles of operation of systems and mechanisms included in active safety systems were presented. This analysis will allow to determine the advantages and disadvantages that should be paid attention to when studying these systems. Practical value. Enhanced active car safety offers a variety of benefits and has substantial value. Reduced accidents and fatalities: Reduced accidents and fatalities, advanced safety measures can significantly reduce the frequency and severity of accidents, leading to fewer injuries and fatalities on the road. Improved traffic flow, proactive safety systems reduce potential hazards and contribute to smoother traffic flow and less congestion caused by accidents. Technological innovation, advances in active safety can contribute to broader technological innovation and influence advances in areas other than automotive safety.

Author Biographies

Maksym Tovstokoryi, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

student of the Automotive faculty, Vehicle Electronics Department

Andrii Hnatov, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

professor, Doct. of Science, Head of Vehicle Electronics Department

References

Singh, K.B., Arat, M.A., Taheri, S. (2012) Development of a smart tire system and its use in improving the performance of a collision mitigation braking system. 2012 International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15 November. 77–87.

Коростельов М., Гнатов А. (2020). Дослідження активних систем безпеки для автотранспортних засобів. Автомобільний транспорт, (46), 40-40. Korostelʹov M., Hnatov A. (2020). Doslidzhennya aktyvnykh system bezpeky dlya avtotransportnykh zasobiv. Avtomobilʹnyy transport. [Study of active safety systems for motor vehicles.] Automobile transport, (46), 40-40. [in Ukrainian].

Arhun, S., Borodenko, Y., Hnatov, A., Popova, A., Hnatova, H., Kunicina, N., & Ribickis, L. (2020). Choice of Parameters for the Electrodrive Diagnostic System of Hybrid Vehicle Traction. Latvian Journal of Physics and Technical Sciences, 57(4), 3-11.

Xin, J. (2014). Application of Trenchless Pipeline Rehabilitation Technology. 473–477. https://doi.org/10.1061/9780784413821.051

Chekalin, V. G. (2011). Diagnosis and adjustment of automated electric drives (Uchebnoe posobie dlya VTUZov). TTU im. M. Osimi.

Borodenko, Y., Ribickis, L., Zabasta, A., Arhun, S., Kunicina, N., Zhiravetska, A., Kunicins, K. (2020). Using the method of the spectral analysis in diagnostics of electrical process of propulsion systems power supply in electric car. Przeglad Elektrotechniczny. R96. 47-50.

Tire Pressure Monitoring [Applications of Control] (2008). Retrieved from https://www.researchgate.net/figure/A-direct-tire-pressure-monitoring-system-Sensors-in-each-tire- measure-pressure-The-data_fig1_3207920

Longitudinal forces acting on the vehicle during braking on a downhill (2023). Retrieved from https://researchgate.net/figure/Longitudinal-forces-acting-on-the-vehicle-during-braking-on-a-downhill_fig1_359521165

Dziubenko, O., Arhun, S., Hnatov, A., Ponikarovska, S. (2021). Choosing the method for determining angular motions of motor vehicle electromechanical subassemblies. EAI Endorsed Transactions on Energy Web, 8(32), 1-8. https://doi.org/10.4108/eai.1-7-2020.165999

Hnatov, A., Patlins, A., Arhun, S., Kunicina, N., Hnatova, H., Ulianets, O., & Romanovs, A. (2020, September). Development of an unified energy-efficient system for urban transport. In 2020 6th IEEE International Energy Conference (ENERGYCon), 248-253.

Bloecher H. L., Dickmann J., Andres M. (2009)

Automotive active safety & comfort functions using radar. 2009 IEEE International Conference on Ultra-Wideband. IEEE, 490-494.

Hnatov, A., Arhun, S., Tarasov, K., Hnatova, H., Mygal, V., Patlins, A. (2019, October). Researching the model of electric propulsion system for bus using Matlab Simulink. In 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) (pp. 1-6). IEEE.

Bazhynova T., Kravchenko, O., Barta D., Haievyi, O., Pavelcik V. (2020) Neural Network Model of Assessing the Technical Condition of the Power Unit of a Hybrid Vehicle. 2020 XII International Science-Technical Conference AUTOMOTIVE SAFETY. (21-23 October 2020, Kielce, Poland) IEEE. 1-7.

Ніконов, О.Я., Щебенюк В.С., Улько В. Ю. (2015) Інтелектуалізація системи круїз-контролю автомобіля на основі штучних нейронних мереж. Автомобіль і електроніка. Сучасні технології. 7. 81-84. Nikonov, O.Ya., Shchebenyuk V. S., Ulʹko V. YU. (2015) Intelektualizatsiya systemy kruyiz-kontrolyu avtomobilya na osnovi shtuchnykh neyronnykh merezh. ["Intellectualization of the car cruise control system based on artificial neural networks."] Car and electronics. Modern Technologies, (7). 81-84.[in Ukraimian].

Мигаль, В., Аргун, Щ., Гнатов, А., Гнатова, Г., Сохін, П. (2022) Інтелектуальне діагностування транспортних засобів. Автомобіль і електроніка. Сучасні технології, (22),72–80. Migal V., Argun Sh., Gnatov A., Gnatova G., Sokhin P. (2022) Intelektual'naya diagnostika transportnykh zasobiv.Intelligent vehicle diagnostics. [Intelligent diagnosis of vehicles]. Avtomobil i elektronika. Suchasni tekhnolohii. 22, 72–80. [in Ukrainan].

Козачук, В.В., Онищук, В.П., Козачук І.С. (2022) Системи управління тиском повітря в шинах транспортних засобів. Центральний науковий вісник. Технічні науки. 5(36), 289-298. Kozachuk V. V., Onyshchuk V. P., Kozachuk I. S. (2022) Systemy kontrolyu tysku povitrya v shynakh transportnykh zasobiv [Air pressure control systems in vehicle tires.]. Tsentralnyi naukovyi visnyk. Tekhnichni nauky. 5(36), 289-298. [in Ukraimian].

Regenerative Braking Logic (2023). Retrieved from https://www.mdpi.com/1996-1073/15/16/5846

Driver support (2023). Retrieved from https://www.researchgate.net/publication/265111347

ABS (2023). Retrieved from https://mdpires.com/d_attachment/applsci/applsci-10-05271/article_deploy/applsci-10-05271v2.pdf?version=1596205639.

ПІД-закони регулювання (2023). Retrieved from http://eir.zntu.edu.ua/bitstream/123456789/7310/1/MR_Nepomnyashchiy.pdf PID-zakony rehulyuvannya (2023) [SUB-laws of regulation] Retrieved from http://eir.zntu.edu.ua/bitstream/123456789/7310/1/MR_Nepomnyashchiy.pdf. [in Ukrainian].

Savino, G., Lot, R., Massaro, M., Rizzi, M., Symeonidis, I., Will, S., & Brown, J. (2020). Active safety systems for powered two-wheelers: A systematic review. Traffic injury prevention, 21(1), 78-86.

Arena, F., Pau, G., & Severino, A. (2020). An overview on the current status and future perspectives of smart cars. Infrastructures, 5(7), 53.

Published

2023-12-25

How to Cite

Tovstokoryi, M., & Hnatov, A. (2023). Analysis of opportunities to increase the level of active car safety. Vehicle and Electronics. Innovative Technologies, (24), 41–49. https://doi.org/10.30977/VEIT.2023.24.0.8

Issue

Section

WAYS TO IMPROVE THE ECONOMIC AND ENVIRONMENTAL INDICATORS OF MOTOR VEHICLES. ENERGY SAVING TECHNOLOGIES