The development directions of light-duty electric vehicle designs in the aspect of resource saving

Authors

DOI:

https://doi.org/10.30977/VEIT.2023.24.0.3

Keywords:

light-duty electric vehicle, electric vehicles of category L and N1, specific power, modular design, classification of light-duty electric vehicles, optimized parameters of electric vehicles

Abstract

Problem. Every year, light-duty electric vehicles are used more and more for the delivery of various industrial goods, food products, and postal items to end consumers, in particular, on the orders of individuals. Such electric vehicles are called last-mile delivery vehicles. According to the main design and operational parameters, they belong to two categories – to three- or four-wheeled motor vehicles of category L and four-wheeled category N1. Today, light-duty electric vehicles with very different load capacities (from 50 kg to 800 kg) and autonomous mileage (from 30 km to more than 150 km) are manufactured and operated. It is clear that their operational characteristics are so different that their adequate comparison of different models is very often practically meaningless. And the selection of the values of the main technical and operational parameters at the stage of developing sketch proposals according to different structural schemes and on the basis of different aggregate base causes significant problems. Goal. The determination of the directions of development of the domestic field of design and production of promising competitive models of light-duty electric vehicles, taking into account modern problems of resource conservation, and development of recommendations regarding the selection of the values of their main technical and operational parameters and characteristic relative indicators. Methodology. On the basis of analytical studies, the classification of light-duty electric vehicles by load capacity was developed and the determination, taking into account the developed classification, of the recommended values of their defining technical and operational parameters. On the basis of expert assessment of existing systems of modular unification of structures of light-duty electric vehicles, the concept of their modular design system was developed. Results. On the basis of analytical studies, the classification of light-duty electric vehicles by load capacity was developed and the determination, taking into account the developed classification, of the recommended values of their defining technical and operational parameters. On the basis of expert assessment of existing systems of modular unification of structures of light-duty electric vehicles, the concept of their modular design system was developed. Originality. The relative indicators of the technical excellence of light-duty electric vehicles are proposed, the concept of a modular design system of standard-sized series of maximum-unified basic chassis of such vehicles is developed.  Practical value.  The proposed classification of small-capacity electric vehicles by cargo capacity greatly facilitates the selection of their relative evaluation indicators and operational parameters at the stage of developing draft proposals for the creation of promising and competitive models for the organization.

Author Biography

Stanislav Voytkiv, Scientific and technical Center "Autopoliprom", 32/24, Zubrivska, str., Lviv, 79066, Ukraine

Cand. of Science, General Designer

References

Войтків С. В. (2023). Аналіз процесу створення вітчизняного електромобіля малої вантажопідйомності за результатами виготов-лення і випробувань дослідного зразка. Матер. XІ Міжнар. наук.-техн. інтер.-конф. "Проб-леми та перспективи розвитку автомобільного транспорту", 13-14 квітня 2023 року: зб. наук. пр. Вінниця: ВНТУ, 8-19. Voytkiv S. V. (2023). Analiz protsesu stvorennia vitchyznianoho elektromobilia maloi vantazhopidiomnosti za rezultatamy vyhotov-lennia i vyprobuvan doslidnoho zrazka. [Analysis of the process of creating a domestic electric vehicle with a small carrying capacity based on the results of the production and testing of the prototype]. Mater. XI Mizhnar. nauk.-tekhn. inter.-konf. "Problemy ta perspektyvy rozvytku avtomobilnoho transportu", 13-14 kvitnia 2023 roku: zb. nauk. pr. Vinnytsia: VNTU, 8-19. [in Ukrainian].

Tanase, G. C. (2021). The Increasing Adoption of Electric Vehicles (EVs) in The Last-Mile Delivery Operations. Romanian Distribution Committee Magazine, Romanian Distribution Committee, 12(3), 33-37. Retrieved from: http://crd-aida.ro/RePEc/rdc/ v12i3/3.pdf.

Starczewski, J. (2019). Analysis of Transport Process’ Costs with Use Various Technologies in Terms of Last Mile Delivery Problem. Research Methods and Solutions to Current Transport Problems, 401-410. https://doi.org/10.1007/978-3-030-27687-4_40

Kishore, S., Waghmare, R. & Johnvieira, A. (2022). Use Of Electric Vehicles In Last-Mile Delivery For B2c: A Step Towards Green Supply Chain. Journal of Positive School Psychology, 6 (6), 2439-2447. https://doi.org/journalppw.com 2022

Galati, A., Adamashvili, N. & Crescimanno, M. (2023). A feasibility analysis on adopting electric vehicles in the short food supply chain based on GHG emissions and economic costs estimations. Sustainable Production and Consumption, 36, 49–61. https://doi.org/10.1016/j.spc.2023.01.001

Siragusa, C., Tumino, A., Mangiaracina, R. & Perego, A. (2022). Electric vehicles performing last-mile delivery in B2C e-commerce: An economic and environmental assessment. Interna-tional Journal of Sustainable Transportation, 16(1), 22-33. https://doi.org/10.1080/15568318.2020.1847367

Gee, I. M., Faust, K. M. & Webber, M. E. (2021). A framework for determining energy use in rural food delivery services: capturing system interdependencies through an agent-based discrete-event approach. Environ. Res.: Infrastruct. Sustain, 1, 14. https://doi.org/10.1088/2634-4505/ac2b10

Yardjouman, Y., Kumar, T. P., Kiran, S. S., Ajith, L. & Dharmaraju, T. V. (2021). Development of a Last Mile Delivery Electric Vehicle. International Journal for Modern Trends in Science and Technology, 16-27. https://doi.org/10.46501/GIETAE04

Andaloro, L., Napoli, G., Micari, F., Agnello, S. S. & Antonucci, G. V. (2015). Development of a new concept electric vehicle for last mile transpor-tations. World Electric Vehicle Journal, 7(3), 342-348. https://doi.org/10.3390/wevj7030342

Höfer, A., Esl, E., Türk, D. & Hüttinger, V. (2021). Conception and Development of a Last Mile Vehicle for Urban Areas. Small Electric Vehicles, 167-177. https://doi.org/10.1007/978-3-030-65843-4_13

Napoli, G., Polimeni, A., Micari, S., Dispenza, G., Antonucci, V. & Andaloro, L. (2021). Freight distribution with electric vehicles: A case study in Sicily. Delivery van development. Transportation Engineering, 3. https://doi.org/10.1016/j.treng.2021.100048

Sorooshian, S., Sharifabad, S. K., Parsaee, M. & Afshari, A. R. (2022). Toward a Modern Last-Mile Delivery: Consequences and Obstacles of Intelligent Technology. Applied System Innovation, 4, 16. https://doi.org/10.3390/asi5040082

Moradi, N., Sadati, İ. & Çatay, B. (). Last mile delivery routing problem using autonomous electric vehicles. Computers & Industrial Engineering, 184. https://doi.org/10.1016/j.cie.2023.109552

Schomakers, E.-M., Klatte, M., Lotz, V., Biermann, H., Kober, F. & Ziefle, M. (2022). Analysis of the potential of a new concept for urban last-mile delivery: Ducktrain. Transportation Research Interdisciplinary Perspectives, 14, 10. https://doi.org/10.1016/j.trip.2022.100579

Харченко В. Ф., Козлова О. С. (2019). До пи-тання реального потенціалу підвищення енер-гоефективності міського електротранспрорту. Вчені записки ТНУ імені В. І. Вернадського. Серія: технічні науки., 30 (69), 184-190. Kharchenko V. F., Kozlova O. S. (2019). Do py-tannia realnoho potentsialu pidvyshchennia ener-hoefektyvnosti miskoho elektrotransprortu. [To the question of the real potential of increasing the energy efficiency of city electric transport]. Scientific Notes of Taurida V.I. Vernadsky University, series Technical Sciences, 30 (69), 184-190. https://doi.org/10.32838/2663-5941/2019.3-2/32 [in Ukrainian].

Regulation (EU) No 168/2013 of the European Parliament and of the council of 15 January 2013 on the approval and market surveillance of two- or three-wheel vehicles and quadricycles. Official Journal of the European Union, L60/52.

Войтків С. В. (2023). Огляд і аналіз конструк-цій вантажних велоелектромобілів категорії L1е-А. Зб. тез доповідей III-ї Між. наук.-техн. конф. "Перспективи розвитку машинобуду-вання та транспорту – 2023". Вінниця: ВНТУ, 193-194. Voytkiv S. V. (2023). Ohliad i analiz konstruktsii vantazhnykh veloelektromobiliv katehorii L1e-A. [Review and analysis of the constructions of cargo bicycle electric vehicles of category L1е-А.]. Zb. tez dopovidei III-yi Mizh. nauk.-tekhn. konf. "Perspektyvy rozvytku mashynobuduvannia ta transportu – 2023". Vinnytsia: VNTU, 2023, 193-194. [in Ukrainian].

Біла, І. С., Красман, Н. В. (2018). Розвиток ре-сурсозбереження в Україні. Економіка та уп-равління національним господарством, 21, 53-58. Bila, I. S., Krasman, N. V. (2018). Rozvytok resursozberezhennia v Ukraini. [The development of resource savings in Ukraine]. Ekonomika ta upravlinnia natsionalnym hospodarstvom, 21, 53-58. Retrieved from: http://www.market-infr.od.ua/ jour-nals/2018/21_2018_ukr/12.pdf [in Ukrainian].

Published

2023-12-25

How to Cite

Voytkiv, S. (2023). The development directions of light-duty electric vehicle designs in the aspect of resource saving. Vehicle and Electronics. Innovative Technologies, (24), 15–31. https://doi.org/10.30977/VEIT.2023.24.0.3

Issue

Section

WAYS TO IMPROVE THE ECONOMIC AND ENVIRONMENTAL INDICATORS OF MOTOR VEHICLES. ENERGY SAVING TECHNOLOGIES