Research of electric vehicle battery packs and charging stations based on an active three-phase rectifier

Authors

DOI:

https://doi.org/10.30977/VEIT.2023.24.0.2

Keywords:

charging stations for electric vehicles, voltage source rectifier, current source rectifiers, lithium-ion batteries, lithium-iron-phosphate batteries, lithium-titanium batteries

Abstract

Problem. The proliferation of electric vehicles has underscored the need for the development of energy-efficient charging stations and systems. These systems must deliver high efficiency, maintain a power factor close to unity, adhere to electromagnetic compatibility standards, emit low levels of higher harmonics, and enable fast charging capabilities. Current electric vehicle charging devices encounter issues such as significant power losses, high harmonic emissions to the power grid, and challenges in implementing fast charging modes. Consequently, enhancing the energy efficiency of charging stations – by reducing power losses, minimizing harmonic emissions, ensuring a high power factor, and supporting modes for regulated current and voltage sources for fast charging – is a pressing concern. Goal. The aim of this work is to perform a comparative analysis of different types of batteries for electric vehicles, exemplified by TESLA cars, presenting comparative characteristics of lithium-ion, lithium-iron-phosphate, and lithium-titanate batteries. Methodology. The study showcases an evaluation of battery units for electric vehicles and outlines a comparative assessment of lithium-ion, lithium-iron-phosphate, and lithium-titanate batteries. The research focuses on enhancing the energy efficiency of electric vehicle charging station systems through the use of active rectifiers, with modes for active power factor correction and optimal configuration. Results. An examination of the quality of converters for electric vehicle charging stations was conducted, proposing schemes for a three-phase active voltage source rectifier and an active current source rectifier. Power circuitry and space-vector switching states for power transistors are introduced. Analysis concludes that an active current rectifier may be a more promising topology. Originality. A model of a charging station based on an active current source rectifier was developed using Matlab/Simulink. Transient processes of the converter's operation and the charging of a 60 kWh battery pack were examined. It was found that the active rectifier facilitates regulation of the battery charging current, achieves a power factor close to unity, and maintains a low level of higher harmonic emissions with a harmonic distortion factor of 2.52%. Practical value. The advancement of electric vehicles necessitates the ongoing development and enhancement of the energy indicators for electric vehicle batteries and the converters of charging stations, especially those that enable fast charging. Active progress is being made in each of these areas.

Author Biography

Ruslan Bahach, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

postgraduate, Vehicle Electronics Department

References

Грома, Я. В., & Глущенко, Я. І. (2019). Порівня-льний аналіз ринку електромобілів в Україні та світі. Економічний вісник Національного технічного університету України «Київський політехнічний інститут», (16). Hroma, Ya. V., & Hlushchenko, Ya. I. (2019). Porivnialnyi analiz rynku elektromоbiliv v Ukraini ta sviti. [Compar-ative analysis of the electric car market in Ukraine and the world.] Ekonomichnyi visnyk Natsionalnoho tekhnichnoho universytetu Ukrainy «Kyivskyi politekhnichnyi instytut», (16). [in Ukrainian].

Олішевська, В. Є., & Олішевський, Г. С. (2023). Потенціал і конкурентоспроможність елек-тромобілів. Olishevska, V. Ye., & Olishevskyi, H. S. (2023). Potentsial i konkurentospromozhnist elektromobiliv. [Potential and competitiveness of electric vehicles] [in Ukrainian].

Гончар, І. А., & Пальян, З. О. (2018). Стати-стичний аналіз розвитку ринку електроавто-мобілів в Україні: проблеми, шляхи вирішен-ня. Статистика України, (2), 13-21. Honchar, I. A., & Palian, Z. O. (2018). Statystychnyi analiz rozvytku rynku elektroavtomobiliv v Ukraini: problemy, shliakhy vyrishennia. [Statistical anal-ysis of the development of the electric car market in Ukraine: problems, solutions] Statystyka Ukrainy, (2), 13-21. [in Ukrainian].

Borodenko, Y., Arhun, S., Hnatov, A., Kunicina, N., Bisenieks, M., Migal, V., & Hnatova, H. (2023). Diagnostics of electric drive Electric vehi-cle with Valve Motor. Przeglad Elektrotech-niczny, 99(6).

Patlins, A., Hnatov, A., Arhun, S., Hnatova, H., & Saraiev, O. (2022, May). Features of converting a car with an internal combustion engine into an electric car. In 2022 IEEE 7th International Ener-gy Conference (ENERGYCON) (pp. 1-6). IEEE.

Hnatov, A., Patlins, A., Arhun, S., Kunicina, N., Hnatova, H., Ulianets, O., & Romanovs, A. (2020, September). Development of an unified energy-efficient system for urban transport. In 2020 6th IEEE International Energy Confer-ence (ENERGYCon) (pp. 248-253). IEEE.

Нерубацький, В. П., Плахтій, О. А., Машура, А. В., & Гордієнко, Д. А. (2019). Аналіз технічних характеристик акумуляторних батарей і сис-тем заряджання електромобі-лів. Інформаційно-керуючі системи на заліз-ничному транспорті, 24(6), 11-19. Nerubatskyi, V. P., Plakhtii, O. A., Mashura, A. V., & Hordiien-ko, D. A. (2019). Analiz tekhnichnykh kharakter-ystyk akumuliatornykh batarei i system zariadzhannia elektromobiliv. [Analysis of tech-nical characteristics of accumulator batteries and electric car charging systems] Informatsiino-keruiuchi systemy na zaliznychnomu transporti, 24(6), 11-19. [in Ukrainian].

Будько, В. І. (2016). Аналіз доцільності впрова-дження зарядних станцій електромобілів на основі відновлюваних джерел енергії в Украї-ні. Відновлювана енергетика, (4), 32-41. Budko, V. I. (2016). Analiz dotsilnosti vprovadzhennia zariadnykh stantsii elektromobiliv na osnovi vidnovliuvanykh dzherel enerhii v Ukraini. [Analysis of the feasibil-ity of introducing charging stations for electric vehicles based on renewable energy sources in Ukraine] Vidnovliuvana enerhetyka, (4), 32-41. [in Ukrainian].

Будько, В. І. (2017). Аналіз особливостей робо-ти та специфіки зарядних режимів нікель-металогідридних та літієвих акумуляторних батарей. Budko, V. I. (2017).Analiz osoblyvostei roboty ta spetsyfiky zariadnykh rezhymiv nikel-metalohidrydnykh ta litiievykh akumuliatornykh batarei. [Analysis of features of operation and specifics of charging modes of nickel-metal hy-dride and lithium storage batteries] [in Ukrainian]

Plakhtii, O., Nerubatskyi, V., Mashura, A., Hordiienko, D., & Khoruzhevskyi, H. (2020). Im-proving energy indicators of the charging station for electric vehicles based on a three-level active rectifier.East European Journal of Advanced Technologies , 3(8-105), 46-55.

RB, A. S., & Sindhu, M. R. (2022, November). On-Board EV Charging with VIENNA Rectifier and LLC Resonant Converter. In 2022 IEEE 19th India Council International Conference (INDICON) (pp. 1-6). IEEE.

Chaurasiya, S., & Singh, B. (2021, November). A 7.2 kW Off-Board EV Charger Based on Vienna Rectifier and FB-LLC Resonating Converter. In 2021 IEEE 8th Uttar Pradesh Section Interna-tional Conference on Electrical, Electronics and Computer Engineering (UPCON) (pp. 1-6). IEEE.

Plakhtii, O., Nerubatskyi, V., Scherbak, Y., Mashura, A., & Khomenko, I. (2020, October). Energy efficiency criterion of power active filter in a three-phase network. In 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek) (pp. 165-170). IEEE.

Bayhan, S., & Komurcugil, H. (2022, October). A T-Type converter-based Electric Vehicle Charger with Active Power Filter Functionality. In IECON 2022–48th Annual Conference of the IEEE In-dustrial Electronics Society (pp. 1-6). IEEE.

Hnatov, A., & Arhun, S. (2017). Energy saving technologies for urban bus transport. International journal of automotive and mechanical engineering, 14(4), 4649-4664.

Plakhtii, O., Nerubatskyi, V., Mashura, A., & Hordiienko, D. (2020, April). The analysis of mathematical models of charge-discharge char-acteristics in lithium-ion batteries. In 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO) (pp. 635-640). IEEE.

Smagin, D. I., Trofimov, A. A., Napreenko, K. S., & Neveshkina, A. R. (2020). Mathematical mod-el of lithium-ion battery cell and battery (Lib) on its basis. In IOP Conference Series: Materials Science and Engineering (Vol. 714, No. 1, p. 012027). IOP Publishing.

For more information on how Panasonic can assist you with your battery power solution needs, visit us at www.panasonic.com/industrial/batteris-oem, e-mail secsales@us.panasonic.com, or call (469)3625600.https://www.batteryspace.com/prod-specs/ncr18650b.pdf

Copy rights belongs to Antbatt Co. Ltd. 2019.www.antbatt.com.https://www.antbatt.com/wp-content/uploads/2019/09/18650-3.2V-1600mAh-datasheet.pdf

GWL a.s.Průmyslová 11, 102 00 Prague 10 Czech Republic, European Union. www.gwl.eu. https://files.gwl.eu/inc/_doc/attach/StoItem/6991/LTO-40AH-CY_datasheet.pdf

Plakhtii, O., Nerubatskyi, V., Karpenko, N., Ananіeva, О., Khoruzhevskyi, H., & Kavun, V. (2019). In the cells of a modular six-level invert-er. Eastern-European Journal of Enterprise Tech-nologies, 6(8), 102.

Xu, D., Wang, L., & Yang, J. (2010, June). Re-search on li-ion battery management system. In 2010 International conference on electrical and control engineering (pp. 4106-4109). IEEE.

Rodríguez, J. R., Dixon, J. W., Espinoza, J. R., Pontt, J., & Lezana, P. (2005). PWM regenerative rectifiers: State of the art. IEEE Transactions on Industrial Electronics, 52(1), 5-22.

Lu, D., Wang, X., & Blaabjerg, F. (2018, June). Investigation on the AC/DC interactions in volt-age-source rectifiers and current-source rectifiers. In 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL) (pp. 1-6). IEEE.

Li, Y. W., Pande, M., Zargari, N., & Wu, B. (2009). Power-factor compensation for PWM CSR–CSI-fed high-power drive system using flux adjustment. IEEE Transactions on Power Elec-tronics, 24(12), 3014-3019.

Nerubatskyi, V., Plakhtii, O., Ananіeva, O., & Zinchenko, O. (2019). Analysis of the Smart Grid concept for DC power supply systems. Industry 4.0, 4(4), 179-193.

Zhemerov, G., Plakhtii, O., & Mashura, A. (2020, September). Efficiency analysis of charging sta-tion for electric vehicles using the active rectifier in microgrid system. In 2020 IEEE 4th Interna-tional Conference on Intelligent Energy and Pow-er Systems (IEPS) (pp. 37-42). IEEE.

Rodríguez, J. R., Pontt, J., Silva, C., Wiechmann, E. P., Hammond, P. W., Santucci, F. W., ... & Lezana, P. (2005). Large current rectifiers: State of the art and future trends. IEEE Transactions on Industrial Electronics, 52(3), 738-746.

Zhang, Y., & Li, Y. W. (2015). Grid harmonics compensation using high-power PWM converters based on combination approach. IEEE Journal of Emerging and Selected Topics in Power Electronics, 4(1), 186-197.

Published

2023-12-25

How to Cite

Bahach, R. (2023). Research of electric vehicle battery packs and charging stations based on an active three-phase rectifier. Vehicle and Electronics. Innovative Technologies, (24), 62–71. https://doi.org/10.30977/VEIT.2023.24.0.2

Issue

Section

TRANSPORT INFRASTRUCTURE, DEVELOPMENT OF THE NETWORK OF CHARGE STATIONS FOR ECOMOBILE. INFORMATION AND COMMUNICATION TEC