Method for determining the locations of power cable damage

Authors

DOI:

https://doi.org/10.30977/VEIT.2023.23.0.6

Keywords:

floating breakthrough, short circuit indicators, short circuit, transitional processes, Raman scattering, shock current

Abstract

Problem. Existing methods for remotely detecting cable damage locations, except in the case of cable breakage, have a common drawback. They are unable to accurately separate the cable core resistance from the transient resistance at the short-circuit location, leading to low accuracy in fault detection. The posterior transient resistance at the short-circuit location can vary widely, depending on when the repair crew arrives. Goal. The goal of this study is to propose a method for identifying the location of "floating breakdown" cable damage. Methodology. The method involves using short-circuit indicators to determine the type and area(s) of the short circuit. The UNI-TUT255A device, a current clamp type, is then installed on the damaged cable core. The Imax option with memory is set, and the cable is switched on at the rated voltage. By comparing the recorded shock current value with the values obtained from a short-circuit model of the cable in MATLAB, the location of the damage along the length of the cable is determined. The point where the shock current value of the model matches the recorded value corresponds to the location of the short circuit. Originality. The proposed method addresses the challenge of locating faults in power cables, specifically those of the "floating breakdown" type. This type of cable damage, which occurs when the cable is accidentally disconnected during a short circuit, poses difficulties in detection, as traditional methods may show normal readings. The method presented in this study overcomes these limitations and provides a practical solution for identifying "floating breakdown" faults. Practical value. The results obtained from this method allow for the accurate detection of faults at the nominal voltage, without the need for burning the cable. This reduces the probability of additional damage caused by overvoltage. Furthermore, the method requires only one operator to carry the necessary equipment, eliminating the need for transport with powerful burning installations typically used in traditional methods.

Author Biographies

Anatoliy Panchenko, Ivan Kozhedub Kharkiv National Air Force University, 77/79, Sumska str., Kharkiv, 61023, Ukraine

Candidate of Technical Sciences, Associate Professor, Associate Professor of Department of Electrotechnical Systems of Weapons Complexes and Military Equipment

Yuliia Musairova, Ivan Kozhedub Kharkiv National Air Force University, 77/79, Sumska str., Kharkiv, 61023, Ukraine

PhD, Teacher of Department of Electrotechnical Systems of Weapons Complexes and Military Equipment

Yevheniia Zarichniak, Ivan Kozhedub Kharkiv National Air Force University, 77/79, Sumska str., Kharkiv, 61023, Ukraine

researcher of the research laboratory

Volodymyr Yevchenko, Ivan Kozhedub Kharkiv National Air Force University, 77/79, Sumska str., Kharkiv, 61023, Ukraine

cadet

Mykola Klymenko, Ivan Kozhedub Kharkiv National Air Force University, 77/79, Sumska str., Kharkiv, 61023, Ukraine

cadet

References

Казанський, С.В., Матеєнко, Ю.П., Сердюк, Б.М. (2011) Надійність електроенергетичних систем: навчальний посібник (НТУУ “КПІ”), 216 с. Kazanskyi, S.V., Mateienko, Yu.P., Serdiuk, B.M. (2011) Nadiinist elektroenerhetychnykh system: nachal-nyi posibnyk. [Kazansky, S.V., Mateyenko, Y.P., Serdyuk, B.M. (2011) Reliability of electric power systems: an initial guide (NTUU "KPI").]. Kyiv. NTUU “KPI”. Р. 216. [in Ukrainian].

Горященко, К.Л. (2012) Діагностика технічного стану провідникових кабельних ліній. Вимірювальна та обчислювальна техніка в технологічних процесах. № 2. С. 61-64. Horyashchenko, K.L. (2012) Diahnostyka tekhnichnoho stanu providnykovykh kabelʹnykh liniy. Vymiryuvalʹna ta obchyslyuvalʹna tekhnika v tekhnolohichnykh protsesakh. № 2. S. 61-64. [Horyashchenko, K.L. (2012) Diagnostics of the technical condition of conductor cable lines. Measuring and computing equipment in technological processes. No. 2. P. 61-64.]

Wang, Y., Ma, X., Zhao, L., Li, H. and Liu J. (2020) Analysis of Power Cable Fault Diagnosis and Electric Field Detection Technology Based on Computer Control System. Journal of Physics: Conference Series, Volume 1574, First International Conference on Computer Applied Science and Information Technology (ICCASIT2020) 15-17 May 2020, Dalian, China.

Wanga, Q., Tang, Ch., Wua, G. and Chenc, G. (2014) Fault location in the outer sheath of power cables. Journal of Power Technologies 94 (4), P. 250–258.

Transients in Electric Power Supply Systems. Textbook for institutions of higher education: under the editorship of G.G.Pivnyak / G.G.Pivnyak, I.V.Zhezhelenko, Y.A.Papaika; Ministry of Education and Science of Ukranian, National Mining University –5-th edition, revised and expanded: Translation from Ukranian. Trans Tech Publications Ltd, Switzerland, 2016. 382 р.

A Fault location on land and submarine links (AC & DC). Cigre Technical Brochure № 773. 2019. 152 p.

Mao, X., Xiang, B., Tu, S. (2022) Research on power penetration cable line fault location based on distributed traveling wave location technology. AIP Advances 12, 055024. doi: 10.1063/5.0093049.

Dmitriev, M.V. (2019) Methods or reducing the voltage induced on the cable line 6-500 kV. ELECTRIC POWER. Transmission and Distribution. no. 4(55). pp. 82-85.

Зайцев, Є.О., Блінов, І.В., Березниченко, В.О., Закусило, А.С. (2022) Засіб ідентифікації пошкодження лінії електропередавання в розподільчих електричних мережах. XVI міжнародна конференція «Вимірювання та керування в складних системах» (MCCS-2022). DOI https://doi.org/10.31649/mccs2022.21. Zaytsev, YE.O., Blinov, I.V., Bereznychenko, V.O., Zakusylo, A.S. (2022) Zasib identyfikatsiyi poshkodzhennya liniyi elektroperedavannya v rozpodilʹchykh elektrychnykh merezhakh. XVI mizhnarodna konferentsiya «Vymiryuvannya ta keruvannya v skladnykh systemakh» (MCCS-2022). DOI https://doi.org/10.31649/mccs2022.21. Zaitsev, E.O., Blinov, I.V., Bereznychenko, V.O., Zakusylo, A.S. (2022) A tool for identifying power line damage in electrical distribution networks. XVI International Conference "Measurement and Control in Complex Systems" (MCCS-2022). DOI https://doi.org/10.31649/mccs2022.21].

Індикатори пошкодження повітряних ліній 6 – 35 кВ Nortroll SICAME від Group. (n.d.). Retrieved from https://sicame.ua/posts?tltblog_id=119. Indykatory poshkodzhennya povitryanykh liniy 6 – 35 kV NORTROLL vid SICAME GROUP. [Indicators of damage to overhead lines 6 - 35 kV Nortroll from SICAME Group]. Retrieved from https://sicame.ua/posts?tltblog_id=119. [in Ukrainian].

Панченко, А.М. (2004) Спосіб визначення максимально можливого струму при несподіваному короткому замиканні. Збірник наукових праць. Харківський військовий університет, 12, с. 148-157. Panchenko, A.M. (2004) Sposib vyznachennia maksymalno mozhlyvoho strumu pry nespodi-vanomu korotkomu zamykanni. [Panchenko, A.M. (2004) A method for determining the maximum possible strum with an unsustainable short chirp.] Collection of scientific works. Kharkiv Viysk University. №12. рр.148-157. [in Ukrainian].

Панченко, А.М. (2005) Метод визначення максимальних кидків струму в трансформаторі при ви-никненні КЗ в фіксовані моменти часу. Збірник наукових праць. Харківський університет Повітряних Сил, 3, с. 78-86. Panchenko, A.M. (2005) Metod vyznachennia maksymalnykh kydkiv strumu v transformatori pry vynyknenni KZ v fiksovani momenty chasu. [Panchenko, A.M. (2005) The method of determining the maximum surge current in a transformer in the event of a short-circuit failure at a fixed moment and hour.] Collection of scientific works. Kharkiv University of Air Forces №3. рр.78-86. [in Ukrainian].

Khudyakov, M. M., Alekseev, V. V., Lipatov, D. S., Gur’yanov, A. N., Temyanko, V., Bubnov, M. M., Likhachev, M. E. (2020) Fiber with off-center core for SBS suppression. SOF., paper SoTu2H.5. https://doi.org/10.1364/SOF.2020.SoTu2H.5

Distributed Acoustic/Vibration Sensing (DAS/DVS) Retrieved from https://www.apsensing.com/technology/distributed-acoustic-sensing-das-dvs.

Gend, J., Staince, S., Blanke, M. and Jiang, Sh. (2007) Distributed fiber temperature and strain sensor using coherent radiofrequency detection of spontaneous Brillouin scattering. Apple. Opt. V. 46. P. 5928-5932. DOI: 10.1364/ao.46.005928

Published

2023-06-29

How to Cite

Panchenko, A., Musairova, Y., Zarichniak, Y., Yevchenko, V., & Klymenko, M. (2023). Method for determining the locations of power cable damage. Vehicle and Electronics. Innovative Technologies, (23), 50–58. https://doi.org/10.30977/VEIT.2023.23.0.6

Issue

Section

TRANSPORT INFRASTRUCTURE, DEVELOPMENT OF THE NETWORK OF CHARGE STATIONS FOR ECOMOBILE. INFORMATION AND COMMUNICATION TEC