Asynchronous Motor in a Mild Hybrid Vehicle

Authors

  • Volodymir Dvadnenko Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine, Ukraine https://orcid.org/0000-0002-6634-3431
  • Oleksandr Dziubenko Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine, Ukraine https://orcid.org/0000-0002-0387-4956
  • Oleg Pushkar Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine, Ukraine

DOI:

https://doi.org/10.30977/VEIT.2022.22.0.6

Keywords:

mild hybrid vehicle, hybrid vehicle control algorithm, asynchronous traction electric motor, traction electric drive, hybrid power plant

Abstract

Problem. Strengthening requirements for reducing CO2 emissions requires reducing fuel consumption in cars with internal combustion engines. One of the ways to solve this problem is to equip cars with a hybrid power plant that combines an internal combustion engine and an electric motor. A classic hybrid vehicle requires two energy sources: a fuel tank for the internal combustion engine and a power battery for the electric motor. Therefore, hybrid vehicle has a more complex design and a relatively high cost. A mild hybrid vehicle is a new concept of a hybrid vehicle for urban use that is emerging today. Such MHVs have a simpler design and also allow you to save up to 30% of fuel in urban driving mode. Goal. The purpose of the work is to improve the economic and environmental characteristics of a mild hybrid car, due to the use of an inexpensive asynchronous electric motor with frequency control in the scalar mode, as well as more effective use of power plant control system algorithms. Methodology. Analytical research methods were used to develop algorithms for effective use of the power plant in acceleration, uniform motion, regenerative braking, and stopping modes. Mathematical modeling and calculation methods were used to justify the use of an asynchronous motor for the power plant of a mild hybrid vehicle. Results. The use of a low-power asynchronous motor in the power plant of a mild hybrid vehicle is mathematically justified. The use of the principle of rational amplitude-frequency scalar control is proposed. An algorithm and a scheme for the implementation of an induction motor control system with support for the optimal power factor have been developed. Originality. Instead of using a valve synchronous electric motor with an expensive control system, it is proposed to use an asynchronous motor, which has advantages in the power plant of a mild hybrid vehicle. An asynchronous motor will allow the use of effective algorithms of uniform motion and regenerative braking modes. Practical value. The design of a soft hybrid vehicle with the use of a low-power asynchronous electric motor makes it efficient and cost-effective. The scalar control method of an asynchronous motor, with the slip control, makes it possible to obtain a system with high control quality and lower cost of implementation.

Author Biographies

Volodymir Dvadnenko, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

professor, Doct. of Science, Vehicle Electronics Department

Oleksandr Dziubenko, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

Ph.D., Assoc. Prof. Vehicle Electronics Department

Oleg Pushkar, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

graduate student, Vehicle Electronics Department

References

Taoudi, A., Haque, M. S., & Luo, C. (2021). Design and Optimization of a Mild Hybrid Electric Vehicle with Energy-Efficient Longitudinal Control. SAE International Journal of Electrified Vehicles, 10(1), 55.

Research and Markets. (2022). Global Hybrid Electric Vehicle Market Report 2022: A $523 Billion Market by 2027 Featuring Toyota, Volkswagen, Honda, Nissan, Renault, BMW, Suzuki, Wuling, Volvo, General Motors. https://www.globenewswire.com/news-release/2022/10/26/2541720/28124/en/Global-Hybrid-Electric-Vehicle-Market-Report-2022-A-523-Billion-Market-by-2027-Featuring-Toyota-Volkswagen-Honda-Nissan-Renault-BMW-Suzuki-Wuling-Volvo-General-Motors.html

Derek Fung. (2014). Hybrids explained: Mild v Full v Plug-in v Extended Range Electric Vehicle. https://www.drive.com.au/news/hybrids-explained-mild-v-full-v-plug-in-v-extended-range-electric-vehicle/

TOYOTA. (2020). Self-charging hybrid vs. Mild hybrid – what is the difference? https://www.toyota.ie/company/news/2020/hybrid-vs-mild-hybrid

The Widespread Introduction of the TOYOTA Mild Hybrid Cars (HEV) May Promote an Earlier Introduction of 42V Cars Introduced into low-priced sedans following the 2001 Crown Royal / Automotive Information Platform. Dec. 07, 2002. 128

Двадненко В.Я., Пушкар О.Б. (2019). Поліпшення економічних та екологічних характеристик мікрогібридного автомобіля. Автомобільний транспорт, 45, 12-22. Dvadnenko V.Ia., Pushkar O.B. (2019). Polipshennia ekonomichnykh ta ekolohichnykh kharakterystyk mikrohibrydnoho avtomobilia [Improvement of the economic and ecological characteristics of the microhybrid vehicle]. Avtomobilnyi transport, 45, 12-22.

x-engineer. (2020). What is the difference between micro, mild, full and plug-in hybrid electric vehicles. https://x-engineer.org/micro-mild-full-hybrid-electric-vehicle/

x-engineer. (2021). Types of Mild Hybrid Electric Vehicles (MHEV). https://x-engineer.org/mild-hybrid-electric-vehicles-mhev-types/

x-engineer. Mild Hybrid Electric Vehicle (MHEV) – components (Continental). https://x-engineer.org/mild-hybrid-electric-vehicle-mhev-components/

Шаговик А.Е. (2006). Система адаптивного управления тяговым асинхронным приводом магистрального локомотива. Диссертация на соискание ученой степени кандидата технических наук, СПб: «ПГУПС». Shahovyk A.E. (2006). Systema adaptyvnoho upravlenyia tiahovim asynkhronnim pryvodom mahystralnoho lokomotyva [Adaptive control system for traction asynchronous drive of a mainline locomotive]. Dyssertatsyia na soyskanye uchenoi stepeny kandydata tekhnycheskykh nauk, SPb: «PHUPS».

Иванов-Смоленский А.В. (2004). Электрические машины. М.: Издательство МЭИ, 532. Ivanov-Smolenskiy A.V. (2004). Elektricheskie mashinyi [Electrical machines]. M.: Izdatelstvo MEI, 532.

Усольцев А.А. (2006). Частотное управление асинхронными двигателями. Учебное пособие. СПб: СПбГУ ИТМО, 94. Usoltsev A.A. (2006). Chastotnoe upravlenie asinhronnyimi dvigatelyami [Frequency control of induction motors]. Uchebnoe posobie. SPb: SPbGU ITMO, 94.

Двадненко В.Я., Дзюбенко О.А. Патент на корисну модель України. Спосіб частотного управління асинхронним тяговим електродвигуном. ХНАДУ. – № u 202107659; заявл. 28.12.2021; опубл. 22.06.2022, Бюл. №25. Dvadnenko V.Ia., Dziubenko O.A. Patent na korysnu model Ukrainy. Sposib chastotnoho upravlinnia asynkhronnym tiahovym elektrodvyhunom [The method of frequency control of an asynchronous traction electric motor]. KhNADU. № u 202107659; zaiavl. 28.12.2021; opubl. 22.06.2022, Biul. №25.

Published

2022-12-27

How to Cite

Dvadnenko, V., Dziubenko, O., & Pushkar, O. (2022). Asynchronous Motor in a Mild Hybrid Vehicle. Vehicle and Electronics. Innovative Technologies, (22), 47–53. https://doi.org/10.30977/VEIT.2022.22.0.6

Issue

Section

WAYS TO IMPROVE THE ECONOMIC AND ENVIRONMENTAL INDICATORS OF MOTOR VEHICLES. ENERGY SAVING TECHNOLOGIES