Method of estimating the time required to ensure the uniform motion of vehicle platoon progres-sion on the coordinated section of the city arterial road

Authors

DOI:

https://doi.org/10.30977/VEIT.2022.22.0.2

Keywords:

progression, coordinated timing plan, uniform motion, traffic signal control, traffic flows, advance time

Abstract

Problem. The problem of distributing competing flows of road users in time is prevalent worldwide, and there is no fully justified and intelligible solution, even if only traffic flows can be considered. At the busiest street intersections, the primary means of traffic management is traffic signal control. If the traffic lights are close to each other, then it is a good practice to coordinate the operation of such traffic lights to organise the most unhampered movement of vehicles in one or several directions; that is the progression. Goal. The goal is estimation of the time required to ensure the uniform motion of vehicle platoon progression on the coordinated artery of the city arterial. Methodology. The developed approach is based on the use of analytical research methods and allows to formalize the interaction of the platoon progression with additional vehicles. Results. The results of the estimation of the minimum time required to ensure the uniform motion of the platoon progression allow us to state that for actual speeds and vehicle accelerations when starting from the stop-line of the intersection, the requirement for the uniform motion of the platoon progression is too strict, especially if we take into account that advance time will increase significantly as the number of additional vehicles in the queue increases. Originality. Analytical models created using formulas of the kinematics of rectilinear uniform accelerated motion of a point make it possible to estimate the minimum advance time of the start of the traffic light signal due to the deliberate speed of traffic and the average acceleration of one additional vehicle when starting from the stop-line of the intersection. Practical value. The developed models reflect the minimum value of the advance time, which ensures uniform motion of the platoon progression, provided that there is one additional vehicle at the stop-line of the intersection.

Author Biographies

Peter Horbachov, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

D.Sc, Professor, Head of the Department of Transportation Systems and Logistics

Yevhen Liubyi, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

PhD. of Engineering, Associate Professor of the Department of Transportation Systems and Logistics

References

HCM 2010: highway capacity manual. (2010). Washington, D.C.: Transportation Research Board.

Teply, S., Allingham, D., Richardson, D. & Stephenson, B. (2008). Canadian Capacity Guide for Signalized Intersections – Third Edition. Ottawa: Institute of Transportation Engineers.

Urbanik, T., Tanaka, A., Lozner, B., Lindstrom, E., Lee, K., Quayle, S., Beaird, S., Tsoi, S., Ryus, P., Gettman, D., Sunkari, S., Balke, K., & Bullock, D. (2015). Signal Timing Manual - Second Edition. Transportation Research Board. https://doi.org/10.17226/22097.

Green, D. & Lewis, K. (2020). Guide to Traffic Management Part 9: Transport Control Systems – Strategies and Operations – Edition 4.0. Australia Sydney, New South Wales: Austroads.

Webster, F.V. (1958). Traffic Signal Setting. Department of Scientific and industrial Research, Road Research Technical Paper No. 39. London, England.

Akçelik, R. (1981). Traffic signals: capacity and timing analysis, ARR 123, Australian Road Research Board, Vermont South Vic., Australia. (Fourth Reprint 1989).

Latham, S., Fooks, W., Haverland, M., Benjamin, S., Law, A. & Kennedy, T. (2021). Best practice guidance to meet the changing needs of transport network operations: strategic review of Austroads Guide to Traffic Management. Austroads Publication No. AP-R657-21. Sydney, New South Wales, Australia.

Traffic Control Signal Design Manual. (2009). Connecticut Department of Transportation Bureau of Engineering and Construction Division of Traffic Engineering.

Горбачов, П.Ф., Свічинський, С.В., Шевченко, В.В. (2020). Визначення граничного рівня завантаження другорядних підходів до міської магістралі з координованим керуванням. Вісник ХНАДУ. №90. 144–154. Horbachov, P.F., Svichynskyi, S.V. & Shevchenko, V.V. (2020). Vyznachennia hranychnoho rivnia zavantazhennia druhoriadnykh pidkhodiv do miskoi mahistrali z koordynovanym keruvanniam. [Determining the maximum threshold of saturation level for minor approaches to the arterial street with coordinated control]. Visnyk KhNADU. №90. 144–154. [in Ukrainian]. https://doi.org/10.30977/BUL.2219-5548.2020.90.0.144

Inose, H. & Hamada, T. (1975). Road traffic control. Tokyo: University of Tokyo Press.

Von Stein, W. (1961). Traffic flow math pre-signals and the signal funnel. Theory of traffic flow: proceeding of the 1st International Symposium on the Theory of Traffic Flow. Amsterdam: Elsevier. 28-56.

Капский Д.В., Навой Д.В. (2010). Методика определения экономических потерь при координированном регулировании движения транспортных и пешеходных потоков. Вестник БНТУ. № 4. 60-70. Kapskiy D.V. & Navoy D.V. (2010). Metodika opredeleniya ekonomicheskih poter pri koordinirovannom regulirovanii dvizheniya transportnyih i peshehodnyih potokov. [Methodology of determining economic losses in the coordinated traffic control of transport and pedestrian flows]. Vestnik BNTU. № 4. 60-70. [in Russian].

Любий Є.В. (2022). Постановка задачі оцінки часу, необхідного для забезпечення рівномірного руху пачки «зеленої хвилі». Discovering New Horizons in Science and Prospects for Implementation of Innovations: Proceedings of the 1st International Scientific and Practical Internet Conference. Dnipro. 117-119. Liubyi Ye.V. (2022). Postanovka zadachi otsinky chasu, neobkhidnoho dlia zabezpechennia rivnomirnoho rukhu pachky «zelenoi khvyli». [Setting the problem of estimation of the time required to ensure the uniform motion of vehicle platoon progression]. Discovering New Horizons in Science and Prospects for Implementation of Innovations: Proceedings of the 1st International Scientific and Practical Internet Conference. Dnipro. 117-119. [in Ukrainian].

Nachlas, J.A. (2017). Reliability Engineering: Probabilistic Models and Maintenance Methods (2nd Edition). Boca Raton. https://doi.org/10.1201/9781315307596.

Правила дорожнього руху України. Pravyla dorozhnoho rukhu Ukrainy. [Traffic rules of Ukraine]. Retrieved from https://zakon.rada.gov.ua/laws/show/1306-2001-%D0%BF#Text. [in Ukrainian].

Liang, X., Du, X., Member, S., & Wang, G. (2019). A deep reinforcement learning network for traffic light cycle control. IEEE Transactions on Vehicular Technology. 68. 1243-1253. https://doi.org/10.1109/TVT.2018.2890726.

Bogdanović, V., Ruškić, N., Papić, Z. & Simeunović, M. (2013). The Research of Vehicle Acceleration at Signalized Intersections. Promet – Traffic&Transportation. Vol. 25. No. 1. 33-42 https://doi.org/10.7307/ptt.v25i1.1245.

Long, G. (2000). Acceleration Characteristics of Starting Vehicles. Transportation Research Record. 1737(1). 58-70. https://doi:10.3141/1737-08.

Published

2022-12-27

How to Cite

Horbachov, P., & Liubyi, Y. (2022). Method of estimating the time required to ensure the uniform motion of vehicle platoon progres-sion on the coordinated section of the city arterial road. Vehicle and Electronics. Innovative Technologies, (22), 81–91. https://doi.org/10.30977/VEIT.2022.22.0.2

Issue

Section

MODELING APPLIED TASKS IN AUTOMOBILE INDUSTRY AND TRANSPORT SYSTEMS