Diagnostics of the technical condition and predic-tion of accident-free guaranteed operating time of heavily loaded machines gear wheels

Authors

DOI:

https://doi.org/10.30977/VEIT.2021.20.0.06

Keywords:

diagnostics, technical condition, prediction, guaranteed operating time, gear, fatigue damage

Abstract

Problem. This article highlights the current state of diagnostics of gears on the level of accumulated fatigue damage in operation. The generalization of the known information on determination of a technical condition of separate gear wheels, especially with big modules (m> 20 mm), allows to outline prospects of development of such diagnostics of a technical condition of gear wheels directly in the course of operation. Goal. The goal of this study is to develop an algorithm for diagnosing the technical condition and forecasting a fault-free operation of the gears of heavy-duty machines. Methodology. The least squares method and the confidence interval method are used to predict accident-free guaranteed gear operation. Results. A procedure for diagnosing the technical condition of gears by measuring the hardness of the metal has been developed, which includes five main stages: selection of the device; choice of measurement scheme; selection of the number of measurements, number and relative position of measuring points; development of a design of a template for measurements; development of a device for fastening templates. When determining the accident-free guaranteed operating time on the basis of several criteria of the limit state, the final decision is made on the criterion that determines the minimum term. Originality. The method of forecasting accident-free guaranteed operating time of gears is chosen taking into account the stages of running-in and stable in linear function accumulation of damage in operation. Practical value. The use of the developed procedure for diagnosing the technical condition of the gears of gearboxes of heavy-duty machines will significantly increase the efficiency of their operation due to the transition from scheduled preventive maintenance to maintenance according to the actual technical condition.

Author Biographies

Anatoliy Gaydamaka, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., 61002, Kharkiv, Ukraine

Doctor of Technical Sciences, Head of the Department of Machine Components and Hydraupneumatic Systems

Yurii Muzykin, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., 61002, Kharkiv, Ukraine

Ph.D., Prof. Department of Machine Components and Hydraupneumatic Systems

Volodymyr Klitnoi, National Technical University «Kharkiv Polytechnic Institute», 2, Kyrpychova str., 61002, Kharkiv, Ukraine

Ph.D., Assoc. Prof. Department of Machine Components and Hydraupneumatic Systems

References

Гапонов, В. С., Музыкин, Ю. Д., Татьков, В. В., Путноки А. Ю., Войтович. А. И. (2013) Характеристики режима работы зубчатых передач прокатного стана 1680 ЦГПТЛ металлургического комбината ОАО «Запорожсталь». Вісник НТУ «ХПІ», № 42 (1015). С 42-48. Gaponov V., Muzykin Y., Tatkov V., Putnoki A., Vojtovich. A. (2013) Harakteristiki rezhima raboty zubchatyh peredach prokatnogo stana 1680 CGPTL metallurgicheskogo kombinata OAO «Zaporozhstal». [ Characteristics of the operating mode of the gears of the rolling mill 1680 TsGPTL metallurgical plant JSC «Zaporizhstal»]. Vіsnik NTU «HPІ». [in Ukrainian].

Клітной, В. В., Клітной, В. В., Батрак, П. О. (2020). Оптимізація планетарної передачі бортового редуктора з використанням методу диференціальної еволюції. Автомобільний транспорт, (47). 15. С. 15-20. Klitnoy, V., Klitnoi, V., Batrak, P. (2020) Optimizaciya planetarnoi peredachi bortovogo reduktora z vikoristannyam metodu diferencialnoi evolyucii. [Optimization of planetary gear of onboard gear-box using the method of differential evolution]. Avtomobilnij transport. (47). 15. 15-20. [in Ukrainian]. https://doi.org/10.30977/AT.2219-8342.2020.47.0.15

Onishchenko, V. (2015). Investigation of tooth wears from scuffing of heavy duty machine spur gears. Mechanism and Machine Theory, Volume 83. P. 38-55. https://doi.org/10.1115/1.802922.paper30

Крот, П. В. (2005) Проблемы управления технической эксплуатацией оборудования прокатных станов. Фундаментальные и прикладные проблемы черной металлургии: Сб. научн. тр. Дніпропетровськ.: ІЧМ НАН України, 10. С. 327-334. Krot, P. (2005) Problemy upravleniya tekhnicheskoj ekspluataciej oborudovaniya prokatnyh stanov. Fundamental'nye i prikladnye problemy chernoj metallurgii. [Problems of managing the technical operation of rolling mill equipment]. Fundamental and applied problems of ferrous metallurgy. 10. 327-334. [in Ukrainian].

Крот, П. В. (2006) Анализ результатов исследований в области динамики и диагностики оборудования прокатных станов. Фундаментальные и прикладные проблемы черной металлургии: Сб. научн. тр. Дніпропетровськ.: ІЧМ НАН України, 12. С. 298-310. Krot, P. (2006) Analiz rezultatov issledovanij v oblasti dinamiki i diagnostiki oborudovaniya prokatnyh stanov. [Analysis of research results in the field of dynamics and diagnostics of rolling mill equipment]. Fundamentalnye i prikladnye problemy chernoj metallurgii. 12. 298-310. [in Ukrainian].

Klitnoi, V., Gaydamaka, A. (2020) On the problem of vibration protection of rotor systems with elastic adaptive elements of quasi-zero stiffness. Diagnostyka, 21(2). P. 69-75. https://doi.org/10.29354/diag/122533

Gaydamaka, A., Muzikin, Y., Klitnoi, V., Basova, Y., Dobrotvorskiy, S. (2021) Selecting the Method for Pre-tightening Threaded Connections of Heavy Engineering. International Conference on Reliable Systems Engineering (ICoRSE), P. 69-77. https://doi.org/10.1007/978-3-030-83368-8_7

Антипенко, Г. Л., Судакова, В. А., Шамбалова, М. Г. (2016) Оценка технического состояния зубчатых колёс по анализу кинематической погрешности передачи. Вестник Белорусского университета, 3(52). С. 6–18. Antipenko, G., Sudakova, V., Shambalova, M. (2016) Ocenka tekhnicheskogo sostoyaniya zubchatyh kolyos po analizu kinematicheskoj pogreshnosti peredachi. [Assessment of the technical condition of gears by analyzing the kinematic error of transmission]. Vestnik Belorusskogo universiteta. 3(52). 6–18. [in Russian].

Frini, M., Soualhi, A., El Badaoui, M. (2019) Gear faults diagnosis based on the geometric indicators of electrical signals in three-phase induction motors. Mechanism and Machine Theory, Volume 138. P. 1-15. https://doi.org/10.1016/j.mechmachtheory.2019.03.030

Yuejian, C., Stephan, S., P. Stephan, H., Ming, J. Z. (2021) A time series model-based method for gear tooth crack detection and severity assessment under random speed variation. Mechanical Systems and Signal Processing, Volume 156. 107605. https://doi.org/10.1016/j.ymssp.2020.107605

Yuejian, C., Xihui, L., Ming, J. Z. (2020) An improved singular value decomposition-based method for gear tooth crack detection and severity assessment. Journal of Sound and Vibration, Volume 468. 115068. https://doi.org/10.1016/j.jsv.2019.115068

Ишин, Н. Н, Гоман, А. М., Скороходов, А. С., Натурьева, М. К. (2014) Оценка остаточного ресурса зубчатых передач в условиях эксплуатации. Неразрушающий контроль и диагностика, № 2. С. 2–6. Ishin, N., Goman, A., Skorohodov, A., Natur'eva, M. (2014) Ocenka ostatochnogo resursa zubchatyh peredach v usloviyah ekspluatacii. [Estimation of the residual life of gears under operating conditions]. Nerazrushayushchij kontrol i diagnostika. 2. 2–6. [in Russian].

Omar D. M., Matti R. (2020). Gear fault models and dynamics-based modelling for gear fault detection – a review. Engineering Failure Analysis, Vol. 117. 104798.

https://doi.org/10.1016/j.engfailanal.2020.104798

Anil, K., Gandhi, C. P., Yuqing, Z., Rajesh, K., Jiawei, X. (2020) Latest developments in gear defect diagnosis and prognosis: A review. Measurement, Vol. 158. 107735.

https://doi.org/10.1016/j.measurement.2020.107735.

Yucesan, Y. A., Dourado, A., Viana, F. A. C. (2021) A survey of modeling for prognosis and health management of industrial equipment. Advanced Engineering Informatics, Volume 50. 101404. https://doi.org/10.1016/j.aei.2021.101404

Worden, K., Cross, E. J., Dervilis, N., Papatheou, E., Antoniadou, I. (2015) Structural health monitoring: from structures to systems-of-systems. IFAC-PapersOnLine, Vol. 48. 21. P. 1-17. https://doi.org/10.1016/j.ifacol.2015.09.497

Звонарев, И. Е., Иванов, С. Л., Шишлянников, Д. И., Фокин, А.С. (2014) Исследования поверхностной твёрдости металла в области повышенного износа и разрушения деталей горных машин. Вестник ПНИПУ. Геология. Нефтегазовое и горное дело, № 11. С. 67–76. Zvonarev, I., Ivanov, S., Shishlyannikov, D., Fokin, A. (2014) Issledovaniya poverhnostnoj tvyordosti metalla v oblasti povyshennogo iznosa i razrusheniya detalej gornyh mashin. [Investigations of the surface hardness of metal in the area of increased wear and destruction of parts of mining machines]. Vestnik PNIPU. Geologiya. Neftegazovoe i gornoe delo. 11. 67–76. [in Russian].

Bjorheim, F., Siriwardane, S. C., Pavlou, D. (2022) A review of fatigue damage detection and measurement techniques. International Journal of Fatigue, Vol. 154. 106556. https://doi.org/10.1016/j.ijfatigue.2021.106556

Drumond, G., Roudet, F., Chicot, D., Pinheiro, B., Pasqualino, I. (2021) A damage criterion to predict the fatigue life of steel pipelines based on indentation measurements. J Offshore Mech Arct Eng, 143(1). 011701. https://doi.org/10.1115/1.4047203

Sulko, M., Chmelko, V., Kepka, M. (2017) Possibility of fatigue damage detection by non- destructive measurement of the surface hardness. Procedia Structural Integrity, 7. P. 262-267.

Санкин, Ю. Н., Гурьянов, М.В. (2007) Способ неразрушающего контроля и прогнозирования ресурса деталей машин. Пат. 2305268 RU. G01N 3/32. заявл. 06.02.2006; опубл. 27.08.2007. № 2006103454/28. 4 с. Sankin, Y., Gur'yanov, M. (2006) Sposob nerazrushayushchego kontrolya i prognozirovaniya resursa detalej mashin. [Method of non-destructive testing and predicting the resource of machine parts]. Pat. 2305268 RU. [in Russian].

Mocko, W., Grzywna, P., Kowalewski, Z. L., Radziejewska, J. (2016) An influence of cyclic loading on the form of constitutive relationship for DP500 steel. Materials & Design, Vol.103. P. 183-193. https://doi.org/10.1016/j.matdes.2016.04.075

Горецкий, В. М., Дубов, А. А., Демин, Е. А. (2000) Исследование структурной повреждаемости стальных образцов с использованием метода магнитной памяти металла. Контроль. Диагностика, № 3. С. 23-26. Goreckij, V., Dubov, A., Demin, E. (2000) Issledovanie strukturnoj povrezhdaemosti stalnyh obrazcov s ispolzovaniem metoda magnitnoj pamyati metalla. [Investigation of the structural damage of steel samples using the metal magnetic memory method]. Kontrol. Diagnostika. 3. 23-26. [in Russian].

Serbin, E. D., Kostin, V. N., Vasilenko, O. N., Ksenofontov, D. G., Gerasimov, E. G., Terentev, P. B. (2020) Influence of the two-stage plastic deformation on the complex of the magnetoacoustic characteristics of low-carbon steel and diagnostics of its structural state. NDT & E International, Vol. 116. 102330. https://doi.org/10.1016/j.ndteint.2020.102330

Venkatachalapathi, N., Jameel basha, S. MD., Raju, G. J., Raghavulu, P. (2018) Characterization of fatigued steel states with metal magnetic memory method. Materials Today: Proceedings, Vol. 5. 2. Part 2. P. 8645-8654. https://doi.org/10.1016/j.matpr.2018.04.002

Губский, С. А., Сухомлин, В. И., Волох, В. И. (2014) Контроль напряжённого состояния сталей по коэрцитивной силе. Машинобудування, №13. С. 6-10. Gubskij, S., Suhomlin, V., Voloh, V. (2014) Kontrol napryazhyonnogo sostoyaniya stalej po koercitivnoj sile. [Control of the stress state of steels by coercive force]. Mashinobuduvannya. [in Ukrainian]. 13. 6-10.

Ye. D. Y., Wang, D. J., An, P. (1996) Characteristics of the change in the surface microhardness during high cycle fatigue damage. Mater Chem Phys, 44(2). P. 179-181.

Chen, Z. J., Strom, A., Jiles, D. C. (1993) Micromagnetic surface measurements for evaluation of surface modifications due to cyclic stress. IEEE Trans Magn, 29(6). Р. 3031-3033.

Уралов, Я. С. Ватулин, С. К. Коровин, А. П. Попов, В. А. (2004) Методика определения остаточного ресурса металлоконструкций башенных кранов БК-1000. Известия Петербургского университета путей сообщения, № 2. С. 162-167. Uralov, Y., Vatulin, S., Korovin, A., Popov, V. (2004) Metodika opredeleniya ostatochnogo resursa metallokonstrukcij bashennyh kranov BK-1000. [Methodology for determining the residual life of metal structures of tower cranes BK-1000]. Izvestiya Peterburgskogo universiteta putej soobshcheniya. 2. 162-167. [in Russian].

Сниткин, В. М., Фролов, И. П., Овсянников, Е. М., Овсянников, В. Е. (2015) Оценка остаточного ресурса мостовых кранов коробчатого сечения. Инженерный вестник Дона, № 3(37). С. 89. Snitkin, V., Frolov, I., Ovsyannikov, E., Ovsyannikov, V. (2015) Ocenka ostatochnogo resursa mostovyh kranov reshetchatogo secheniya. [Estimation of the residual life of box-section overhead cranes]. Elektronnyj nauchnyj zhurnal «Inzhenernyj vestnik Dona». 3(37). 89. [in Russian].

Бойко, Г. О., Бойко, Т. В., Єпіхін, Р. А. (2018) Методи оцінки технічного стану вантажопідйомних кранів. Вісник східноукраїнського національного університету ім. Володимира Даля, № 2 (243). С. 42-49. Boiko, H., Boiko, T., Yepikhin, R. (2018) Metody otsinky tekhnichnoho stanu vantazhopidiomnykh kraniv. [Methods for assessing the technical condition of cranes]. Visnyk skhidnoukrainskoho natsionalnoho universytetu im. Volodymyra Dalia. 2 (243). 42-49. [in Ukrainian].

Гайдамака, А. В., Клітной, В. В., Музикін, Ю. Д., Татьков, В. В., Наумов, О. І., Бородін, Д. Ю. (2020) Спосіб діагностики коліс зубчастих передач за зміною твердості їх торців в зонах можливого руйнування. Пат. 145452, Україна: МПК G01M 13/02. заяв. 13.07.2020. опубл. 10.12.2020. бюл. № 23. 4 с. Gajdamaka, A., Klіtnoi, V., Muzikіn, Y., Tatkov, V., Naumov, O., Borodіn, D. Sposіb dіagnostiki kolіs zubchastih peredach za zmіnoyu tverdostі їh torcіv v zonah mozhlivogo rujnuvannya. [Method of diagnosing gear wheels by changing hardness of their ends in zones of possible destruction]. Patent number 145452. [in Ukrainian].

ДСТУ 8646:2016 Надійність техніки. Оцінювання та прогнозування залишкового ресурсу (строки служби) технічних систем [Чинний від 2017-07-01]. Вид. офіц. Київ: ДП «УкрНДНЦ». 63 с. DSTU 8646:2016 Nadiinist tekhniky. Otsiniuvannia ta prohnozuvannia zalyshkovoho resursu (stroky sluzhby) tekhnichnykh system [Reliability of equipment. Estimation and forecasting of residual resource (service life) of technical systems]. Vyd. ofits. Kyiv: DP «UkrNDNTs». [in Ukrainian].

Published

2021-11-30

How to Cite

Gaydamaka, A., Muzykin, Y., & Klitnoi, V. (2021). Diagnostics of the technical condition and predic-tion of accident-free guaranteed operating time of heavily loaded machines gear wheels. Vehicle and Electronics. Innovative Technologies, (20), 54–61. https://doi.org/10.30977/VEIT.2021.20.0.06

Issue

Section

MECHANICAL ENGINEERING