Determination of tangential properties of a single pneumatic tire in the vehicle braking mode of a vehicle

Authors

  • Valeriy Klimenko Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine
  • Denis Kapski Belarussian National Technical University, 65, Nezavisimosti Avenue, Minsk, 220013, Belarus, Belarus https://orcid.org/0000-0001-9300-3857
  • Dmytro Leontiev Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine https://orcid.org/0000-0003-4255-6317
  • Oleksandr Kuripka Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine https://orcid.org/0000-0002-0550-7201
  • Andrii Frolov Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine https://orcid.org/0000-0002-3868-4511

Keywords:

Brake control, brake system, twisting angle, active safety, vehicle slip

Abstract

Problem. In the event of circumstances that may cause a traffic accident (accident), drivers apply emergency braking, which usually leads to the blocking of car wheels and the formation on the road surface of track information from pneumatic tires. If automated brake force control systems are installed in the brake actuator of the vehicle, the tracking information from the pneumatic tires may be absent or weak, and the braking efficiency of the wheeled vehicle will depend on the angular deformation of the tire relative to the road surface, which in turn is limited. coupling properties in the contact spot "tire-road surface". Goal. The aim of the work is to improve the method of determining the angle of twist of the pneumatic tire of a single car wheel in the mode of its braking by taking into account the effects of the coefficient of friction-sliding on roads with high traction. Methodology the peculiarities of twisting the pneumatic tire of a car wheel with a single busbar in the mode of vehicle braking on roads with low and high coefficient of friction - sliding are considered. The analysis of the model of dynamic change of the tire twist angle depending on the sliding of the tire tread elements in the spot of contact with the road surface is performed, and the results of simulation modeling are obtained, which are confirmed by experimental experiments. Originality. An empirical dependence is proposed, which takes into account the nature of the decrease in the value of the angle of twist of the tire on roads with high traction properties. Practical value. The obtained results of simulation modeling according to the proposed dependence determine that the highest indicators of torsional rigidity of the pneumatic tire are reached at a tire pressure of 0.8 MPa and a vertical load on it of about 2.6 104 N.

Author Biographies

Valeriy Klimenko, Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

professor, Doct of Technical Sciences, Associate Professor of the Departament of Automobiles named after A.B. Gredeskul

Denis Kapski , Belarussian National Technical University, 65, Nezavisimosti Avenue, Minsk, 220013, Belarus

Candidate of Technical Sciences, Automotive and Tractor Faculty

Dmytro Leontiev, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

Candidate of Technical Sciences, Associate Professor of the Departament of Automobiles named after A.B. Gredeskul

Oleksandr Kuripka, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

PhD student

Andrii Frolov, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

PhD student

References

Богомолов В. А. , Рижих Л. А. , Леонтьев Д. Н. , Красюк О. М. , Михалевич Н. Г. Реализация интеллектуальных функций в

электронно – пневматичном тормозном управлении транспортных средств. Харьков, 2015. 450 с

Левин М.А., Фуфаев Н.А. Теория качения деформируемого колеса. Москва, 1989. 272 с.

Кнороз В. И., Кленников Е. В., Петров И. П., Шелухин А. С., Юрьев Ю. М. Работа автомобильной шины. Москва, 1976. 238 с.

Рыжих Л. А., Леонтьев Д. Н., Быкадоров А. В. Определение продольной реализуемой силы сцепления автомобильного колеса с опорной поверхностью по крутильной деформации и ее жесткости. Автомобильная промышленность. Москва, 2014, Вып. 10. С. 20–24.

Вонг. Дж. Теория наземных транспортных средств. Москва, 1982. 284 с.

Фоминых А. Б., Жеглов Л. Ф. Характеристики широкопрофильной автомобильной шины на крупных неровностях. Наука и образование МГТУ им Н.Э. Баумана. Москва, 2015. Вып 11. С. 1–11.

Клименко В. И. , Шуклинов С. Н., Леонтьев Д. Н. Анализ методов определения коэффициента сопротивления качению колес автомобиля. Автомобильный транспорт. Харьков, 2020, Вып 46. С. 33–39.

Leontiev D.N., Nikitchenko I.N., Ryzhyh L.A., Kuripka O.V. (2019) About Applicdtion the Tyre – Adhesion Determination of a Vehicle Equipped withan Automated System of Brake Proportioning. Science and Technique, Minsk, 5, 401-408

Леонтьєв Д. М., Михалевич М. Г., Фролов А. А. Вплив вертикального навантаження на гальмівну силу та коефіцієнт зчеплення шини автомобільного колеса. Теорія та практика судової експертизи і криміналістики. Харків, 2018, Вип. 18. С. 383 – 392.

Pacejka H.B., Besselink J.M. Magic Formula Tyre Model with Transient Properties. Lisse: Swets & Zeitlinger B.V., 1997. P. 234 – 249.

Burckhardt M. Erfahrungen bei der Konzeption und Entwicklung des Mercedes–Benz, Bosch Anti–Blockier–Systems Automobiltechnische Zeitschrift. 1979. 5. P. 201–208.

Mark Denny The dynamics of antilock brake systems. European Journal of Physics. 2005. № 6. P. 1007–1016.

Леонтьев Д.М., Рижих Л.О., Бикадоров О.В. Методи розрахунку коефiцiєнту зчеплення, що реалiзується при коченнi колеса в гальмiвному режимi. Автомобiльний транспорт. Харків, 2010. – Вип. 27. С.7–12.

Samuel K.C. Mechanics of Pneumatic Tires. Washington, 1981. 942 p.

Pauwelssen J., Dalhuijsen W., Merts M., Tyre dynamics, tyre as a vehicle component Part. Arnhem, 2007, 50 p.

References

Turenko A. N., Mikhalyevych N. G., Leontiev D. N. (2015) Realizatsiya intellektualnyih funktsiy v elektronno – pnevmatichnom tormoznom upravlenii transportnyih sredstv. [Implementation of Intelligence Functions in Electronic-pneumatic Brake Control of Vehicles]. Monografiya [in Russian].

Levin, M.A., Fufaev, N.A. (1989) Teoriya kacheniya deformiruemogo kolesa. [The theory of rolling deformed wheels]. Uchebnoe

posobie. [in Russian]

Knoroz V.I. Klennikov E.V., Petrov I.P., Sheluhin A.S., Yrev U.M. (1976) Rabota avtomobilnoy shinu [Car tire operation]

Uchebnoe posobie. [in Russian].

Ryzhykh L.A., Leontiev D.N., Bykadorov A.V. (2014) Opredelenie prodolnoy realizuemoy silyi stsepleniya avtomobilnogo kolesa s opornoy poverhnostyu po krutilnoy deformatsii i ee zhestkosti [Determination Longitudinal Tire using twist angle and stiffness properties of the tire]. Avtomobil`naya Promyshlennost`. Moscow, 10, 20-24 [In Russian].

Wong J.Y. (1982) Teoriya nazemnyih transportnyih sredstv [Theory of ground vehicles] Uchebnoe posobie [In Russian].

Fominyh A.B., Jeglov L.F., (2015) Harakteristiki shirokoprofilnoy avtomobilnoy shinyi na krupnyih nerovnostyah. [Wide – section Tire Features on Large Bumps] Sciense and Education of the Bauman. Moscow, 11, 1-11 [In Russian].

Klimenko V.I., Shuklinov S.N., Leontiev D.N., (2020) Analiz metodov opredeleniya roeficienta soprotivleniya kacheniu koles avtomobila [Analysis of methods for determining the coefficient of rolling resistance of car wheels] Avtomobilnyiy transport, Harkov. 33 – 39 [In Russian].

Leontiev D.N., Nikitchenko I.N., Ryzhyh L.A., Kuripka O.V. (2019) About Applicdtion the Tyre – Adhesion Determination of a Vehicle Equipped withan Automated System of Brake Proportioning. Science and Technique, Minsk, 5, 401-408

Leontiev D.N., Michalevich N.G., Frolov A.A., (2018) Vpliv vertikalnogo navantazhennya na galmIvnu silu ta koefitsient zcheplennya shini avtomobIlnogo kolesa. [Influence of Vertical load on Braking force tire adhesion coefficient of vehicle wheel]. Theory and Practice of Forensic Science and Criminalistics. Harkov, 18, 383-392.

Pacejka, H.B., Besselink, I.J.M. (1997) Magic Formula Tyre Model with Transient Properties. Lisse: Swets & Zeitlinger B.V. 234 – 249.

Burckhardt M. (1979) Erfahrungen bei der Konzeption und Entwicklung des Mercedes–Benz, Bosch Anti–Blockier–Systems Automobiltechnische Zeitschrift. 5. 201–208.

Mark Denny (2005) The dynamics of antilock brake systems. European Journal of Physics. 6. 1007–1016.

Ryzhykh L.A., Leontiev D.N., Bykadorov A.V

(2010) Metodi rozrahunku koefitsiEntu zcheplennya, scho realizuEtsya pri kochenni kolesa v galmivnomu rezhimi.[Methods for calculating the coefficient of adhesion, which is realized when rolling the wheel in the brake mode] Avtomobilniy transport, Harkiv, 27, 7 – 12 [In Russian].

Samuel K.C. (1981) Mechanics of Pneumatic Tires. Washington.

Pauwelssen J., Dalhuijsen W., Merts M. (2007) Tyre dynamics, tyre as a vehicle component Part. Arnhem.

Published

2021-05-01

How to Cite

Klimenko, V., Kapski , D., Leontiev, D., Kuripka, O., & Frolov, A. (2021). Determination of tangential properties of a single pneumatic tire in the vehicle braking mode of a vehicle . Vehicle and Electronics. Innovative Technologies, (19), 28–34. Retrieved from http://veit.khadi.kharkov.ua/article/view/226798

Issue

Section

WAYS TO IMPROVE THE ECONOMIC AND ENVIRONMENTAL INDICATORS OF MOTOR VEHICLES. ENERGY SAVING TECHNOLOGIES