Parametric synthesis of the digital system of the course stability of a car

Authors

  • Евгений Евгеньевич Александров Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine, Ukraine
  • Татьяна Евгеньевна Александрова National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, 61002, Ukraine, Ukraine
  • Ирина Витальевна Костяник National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, 61002, Ukraine, Ukraine
  • Ярослав Юрьевич Моргун National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, 61002, Ukraine, Ukraine

DOI:

https://doi.org/10.30977/VEIT.2020.17.0.69

Abstract

The problem of choosing the variable parameters of a control algorithm, implemented by a digital electronic unit of the system of the course stability of a car and providing the maximum stability margin and the maximum speed of the stabilized process during car braking is considered. It is believed that the angular velocity sensors of the car body are used as the sensitive elements of the system, whose sensitivity axes coincide in direction with the main central axes of the body inertia, and the angular deviation of the longitudinal axis of the body from a given direction is calculated by a digital electronic unit using algorithms of platformless inertial systems (PINS) in the form of a lattice function. Information about the angular velocity of a body rotation is a lattice function at the output of the Lanczos digital low-pass filter, whose input is supplied with the lattice function of the angular deviation of the body from a given direction of the car movement. The lattice control function is a weighted sum of these functions, the weight coefficients of which are variable digital parameters of the Vehicle Stability Controls that are to be selected. The perturbed motion of the continuous part of the closed system is described by ordinary differential equations, the work of the discrete part is described by relations in finite differences. By means of special transformations, the mathematical model of the perturbed motion of the closed-loop control system is represented in the form of a system of difference equations, using which the characteristic equation of the closed discrete system of the course stability of the car is constructed. Using the bilinear W-transformation, the characteristic equation is reduced to a form convenient for constructing the lines of equal degree of stability in the plane of the variable parameters of the digital electronic control unit, followed by determining the optimal values of its variable parameters, as well as assessing the effect of the selected value of the quantization period of the digital electronic unit on the area of stability of the closed digital system of the course stability of a car.

Key words: system of the course stability of a car, Rodrigue Hamilton parameters, lattice function, low-frequency digital filters, variable system parameters.

Author Biographies

Евгений Евгеньевич Александров, Kharkiv National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine

professor, Doct. of Science, Department of automobiles

Татьяна Евгеньевна Александрова, National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, 61002, Ukraine

professor, Doct. of Science, Department of Systems Analysis and Information-Analytical Technologies

Ирина Витальевна Костяник, National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, 61002, Ukraine

Ph.D., Assoc. Prof. Department of Information Technologies and Systems of Wheel and Track Machines named after Morozov

Ярослав Юрьевич Моргун, National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, 61002, Ukraine

graduate student, Department of Systems Analysis and Information-Analytical Technologies

References

Alexsandrov Ye., Aleksandrova T., Morhun Ya. Parametric synthesis of the electronic control unit of the cource stability system of the car. Eastern-European Journal of Enterprise Technologies. 2019. № 6(102). P. 39–45.

Александров Е. Е., Волков В. П., Волонцевич Д. О., Подригало М. А. Повышение устойчивости и управляемости колёсных машин в тормозных режимах. НТУ "ХПИ", Харьков, 2007. 320 с.

Бранец В. Н., Шмыглевский И. П. Введение в теорию бесплатформенных инерциальных систем. М: Наука, 1992. 280 с.

Панов А.П. Математические основы теории инерциальной ориентации. К: Наукова думка, 1995. 279 с.

Александрова Т. Е., Александрова И. Е., Лазаренко А. А. Цифровые фильтры в системах автомобильной автоматики. Вестник Московского автомобильно-дорожного государственного технического университета (МАДИ). 2014. №1 (37). С. 25–28.

Васильев С. К., Захаров В. Н., Прохоров Ю. Ф. Кибернетика в системах военного назначения. Воениздат, Москва, 1979. 293 с.

Алесандров Є. Є. Основы автомобильной автоматики. ХНАДУ, Харьков, 2010. 172 с.

Орурк И. А. Новые методы синтеза линейных и некоторых нелинейных динамических систем. Наука, Москва–Ленинград, 1965. 207 с.

References

Alexsandrov Ye., Aleksandrova T., Morhun Ya. (2019). Parametric synthesis of the electronic control unit of the cource stability system of the car. Eastern-European Journal of Enterprise Technologies. 6 (102). 39–45.

Aleksandrov Ye. Ye., Volkov V. P., Volontsevich D. O., Podrigalo M. A. (2007). Povyishenie ustoychivosti i upravlyaemosti kolyosnyih mashin v tormoznyih rezhimah [Improving the stability and controllability of wheeled vehicles in braking conditions] NTU «KhPI», Kharkiv.

Branets V. N., Shmyglevskiy I. P. (1992) Vvedeniye v teoriyu besplatformennykh inertsial'nykh sistem [Introduction to the theory of strapdown inertial systems] Nauka, Moskva.

Panov A. P. (1995) Matematicheskiye osnovy teorii inertsial'noy oriyentatsii [Mathematical foundations of the theory of inertial orientation], Naukova dumka, Kyiv.

Aleksandrova T. Ye., Aleksandrova I. Ye., Lazarenko A. A. (2014), “Tsifrovyie filtryi v sistemah avtomobilnoy avtomatiki” [Digital filters in automotive automation systems], Vestnik Moskovskogo avtomobilno–dorozhnogo gosudar-stvennogo tehnicheskogo universiteta. 1(37). 25–28 [in Russian].

Vasilev S. K., Zaharov V. N., Prohorov Yu. F. (1979). Kibernetika v sistemah voennogo naznacheniya [Cybernetics in military systems]. Voenizdat, Moskov.

Alesandrov Ye. Ye. (2010). Osnovyi avtomo-bilnoy avtomatiki [Automotive Fundamentals]. KhNADU, Kharkiv.

Orurk I. A. (1965). Novyie metodyi sinteza lineynyih i nekotoryih nelineynyih dinamicheskih sistem [New methods for the synthesis of linear and some nonlinear dynamical systems]. Nauka, Moskov –Leningrad.

Published

2024-06-11

How to Cite

Александров, Е. Е., Александрова, Т. Е., Костяник, И. В., & Моргун, Я. Ю. (2024). Parametric synthesis of the digital system of the course stability of a car. Vehicle and Electronics. Innovative Technologies, (17), 69–76. https://doi.org/10.30977/VEIT.2020.17.0.69

Issue

Section

Select a section