МОДЕЛИРОВАНИЕ И АНАЛИЗ КОЛЕБАНИЙ КОРПУСА ТУРБИНЫ 500 МВт ПРИ СНИЖЕНИИ РАБОЧЕЙ ЧАСТОТЫ

Authors

  • Сергей Васильевич Красников Kharkov National Automobile and Highway University; 25; Yaroslav Mudry street; Kharkiv; 61002; Ukraine, Ukraine

DOI:

https://doi.org/10.30977/VEIT.2226-9266.2019.16.0.59

Abstract

Problem. The problem of increased vibration of bodies of a steam turbine cases with a capacity of steam turbine of 500 МW is considered. The mаin cause of the increased vibration of the steam turbine is the rotor's unbalance and insufficient stiffness of the system elements. The cаse of operating prаctice is considered, where the rotational alignment did not significantly change the vibration parameters. Goаl. In this work the purpose was to make simulation of the forced kind of oscillations of the low-pressure cylinders flexible bodies in the turbineunit-foundation-base system with a turbine unit K-500-65/3000 KHTZ, to study the different causes of their increased level of vibration in case of less work frequencies. Methodology. Тhe research is made using the method of oscillation, the method of finite elements, as well as the author's methods of constructing models and conducting research on oscillations of the turbineunit-foundation-base system. Resиlts. Тhе results of the research is as follows: a three-dimensional complex finite-element model of the turbine-foundation-base system was obtained, as well as the amplitude-frequency dependences for the points of the cylinder body of low pressure. The conducted study made it possible to draw conclusions about the different causes of increased vibration of the parts of the steam turbine unit flexible bodies. Originality. The type of designed three-dimensional models of the turbine unit-foundation-base system is unique. Due to the features of the developed model, it is possible to make a vibration processes study at a low level that enables to analyze the oscillations of complex system elements. For individual kinds of studies, further unique specification of the individual parts of the considered system is required. This enables to use the features of the finite element method to specify the turbine unit-foundation-base system in accordance with the actual operating conditions. Other researchers did not solve the problem or clarified it. Value to practice. The significance of the work done in practical terms is primarily an illustration of the technique as a tool for developing specific models in the study of oscillations of a turbine-foundation-base system, as well as for solving practical problems of concretizing and localizing the causes of increased vibration of individual elements of a complex system.  The results obtained in the work were used to improve the vibration state of the buildings of units with a steam turbine power unit with the capacity of of 500 MW.

Author Biography

Сергей Васильевич Красников, Kharkov National Automobile and Highway University; 25; Yaroslav Mudry street; Kharkiv; 61002; Ukraine

Ph.D., Assoc. Prof.

References

Литература

Косяк Ю. Ф. и др. Паротурбинные установки атомных электростанций, ред. Ю. Ф. Косяк. М.: Энергия. 1978. 312 c.

Трояновский Б. М. Турбины для атомных электростанций. М.: Энергия. 1978. 182 c.

Левченко Е.В., Швецов В.Л., Кожешкурт И.И., Лобко А. Н. Опыт ОАО «ТурбоАтом» в разработке и модернизации турбин для АЭС. СПб,: Энергетические и теплотехнические процессы и оборудование. 2010. № 3. С.5-11.

Субботин В. Г., Левченко Е. В., Швецов В. Л. Паровые турбины ОАО "Турбоатом" для тепловых электростанций. Харьков: Вестник Нац. техн. ун-та "ХПИ". 2009. № 3. С. 6-17.

Еременко С. Ю. Методы конечных элементов в механике деформируемых тел. Харьков: Основа. 1991. 271 с.

Галлагер Р. Метод конечных элементов. Основы. М.: Мир. 1984. 428 с.

HITACHI. Turbine and Generator Foundation Design and construction & recommendation. Tokyo: Japan. 2009. 104 p.

Назаренко С. А., Ткачук Н. А. Обзор некоторых ключевых направлений исследований ученых НТУ « ХПИ» в области динамики конструкций. Харків: Вісник НТУ «ХПІ». 2017. № 39. С.49-56.

Ларін А., Чумаченко О. Співпраця запорізьких авіадвигунобудівних підприємств з провідними вченими України в галузі динамічної міцності в 1950-1970-х рр. Харків: Дослідження з історії техніки. 2016. № 23. С.72-78.

Жовдак В. О., Красников С. В., Степченко О. С. Решение задачи статистической динамики машиностроительных конструкций с учетом случайного изменения параметров. Харків: Проблемы машиностроения. 2004. Т.7, № 3. С. 39 – 47.

Zhiqiang Hu, Wei Wang, Puning Jiang, Qinghua Huang, Jianhua Wang, Sihua Xu, Jin He and Lei Xiao. A Seismic Analysis on Steam Turbine Considering Turbine and Foundation Interaction. Düsseldorf: ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. 2014. no. V01BT27A041. P. 1-8.

Alan Turnbull. Corrosion pitting and environmentally assisted small crack growth. Proceedings. Mathematical, Physical, and Engineering Sciences. London:The Royal Society. 2014. no. 20140254. P. 1-19.

Chowdhury Indrajit, Dasguptu P. Shambhu Dynamics of Structure and foundation a unified approach. Leiden: CRC Press. 2009. 616 p.

Рунов Б. Т. Исследование и устранение вибрации паровых турбоагрегатов. М.: Энергоиздат. 1982. 352 с.

Yu M., Feng N., Hahn E. J. An equation decoupling approach to identify the equivalent foundation in rotating machinery using modal parameters. Journal of Sound and Vibration. 2016. Vol. 365. P. 182-198.

Xu X. P., Han Q. K., Chu F. L. Nonlinear vibration of a generator rotor with unbalanced magnetic pull considering both dynamic and static eccentricities. Archive of Applied Mechanics. 2016. Vol. 86. P. 1521-1536.

Jalali M. H., Ghayour M., Ziaei Rad S., Shahriari B. Dynamic analysis of a high speed rotor-bearing system. Measurement: Journal of the International Measurement Confederation. 2014. Vol. 53. P. 1-9.

Zhang Yang , Yanlong Jiang , Guoyuan Zhang Bending fault evaluation for the HP-IP rotor system of the nuclear steam turbine based on the dynamic model. Journal of Vibroengineering. 2017. Vol. 19. P. 3364-3379.

Minli Yu, Ningsheng Feng, Eric J. Hahn Corrigendum to“ An equation decoupling approach to identify the equivalent foundation in rotatin g machinery using modal parameters” J. Sound Vib. 2016. Vol. 365. P.182 – 198.

Minli Yu, Jike Liu, Ningsheng Feng, Eric J. Hahn Experimental evaluation of a quasi-modal parameter based rotor foundation identification technique . J. Sound Vib. 2017. Vol. 411. P. 165 – 192.

Красніков С. В. Моделирование и анализ вибрационных характеристик корпуса паровой турбины большой мощности. Харків: Вісник НТУ «ХПІ». 2017. № 39. С.23-26.

References

Kosyak Yu. F. and other (1978). Paroturbinnye ustanovki atomnykh elektrostantsii, red. Kosyak Yu. F. [Steam turbine installations of atomic power plants], Moscow, Energiya. 312 [in Russian].

Troyanovskii B. M. (1978). Turbiny dlya atomnykh elektrostantsii [Turbines for nuclear power plants], Moscow, Energiya. 182 [in Russian].

Levchenko E. V., Shvetsov V. L., Kozheshkurt I.I., Lobko A.N. (2010). Opyt OAO « TurboAtom» v raz-rabotke i modernizatsii turbin dlya AES [Experience of OJSC “TurboAtom” in the development and modernization of turbines for nuclear power plants.], Energeticheskie i teplotekhnicheskie protsessy i oborudovanie. SantPeterburg. 3, 5-11 [in Russian].

Subbotin V. G., Levchenko E. V., Shvetsov V. L. (2009). Parovye turbiny OAO "Turboatom" dlya teplovykh elektrostantsii [Turboatom steam turbines for thermal power plants]. Vestnik Nats. tekhn. un-ta "KhPI". Khar'kov, 3, 6-17 [in Russian].

Eremenko S. Yu. (1991). Metody konechnykh elementov v mekhanike deformiruemykh tel [Finite-element methods in mechanics of deformable bodies.], Khar'kov: Osnova. 271 [in Russian].

Gallager R. (1984) Metod konechnykh elementov. Osnovy [The finite element method. Basedata], Moscow, Mir. 428 [in Russian].

(2009). HITACHI. Turbine and Generator Foundation Design and construction & recommendation. Tokyo: Japan, 104.

Nazarenko S. A., Tkachuk N. A (2017). Obzor nekotorykh klyuchevykh napravlenii issledovanii uchenykh NTU « KhPI» v oblasti dinamiki konstruktsii. [Review of the main directions of research of scientists of NTU "KhPI" in the field of dynamics of constructions]. Vіsnik NTU «KhPІ», Kharkіv, 39, 49-56 [in Russian].

Larіn A., Chumachenko O. (2016) Spіvpratsya zaporіz'kikh avіadvigunobudіvnikh pіdpriєmstv z provіdnimi vchenimi Ukraїni v galuzі dinamіch-noї mіtsnostі v 1950-1970-kh rr. [Cooperation Zaporizhzhya aviation engine-building companies with the leading scientists of Ukraine in the field of dynamic strength in the 1950-1970.] Doslі-dzhennya z іstorії tekhnіki, Kharkіv, 23, 72-78 [in Ukrainian].

Zhovdak V. O., Krasnikov S. V., Stepchenko O. S. (2004). Reshenie zadachi statisticheskoi dinamiki ma-shinostroitel'nykh konstruktsii s uchetom slu-chainogo izmeneniya parametrov [The solution of the problem of the statistical dynamics of the machine-building constructions taking into account a random change in parameters. Kharkiv: Engineering problems]. Problemy mashinostroeniya, Kharkіv. 3, 39 – 47 [in Russian].

Zhiqiang Hu, Wei Wang, Puning Jiang, Qinghua Huang, Jianhua Wang, Sihua Xu, Jin He and Lei Xiao (2014). A Seismic Analysis on Steam Turbine Con-sidering Turbine and Foundation Interaction. ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf. V01BT27A041, 1-8.

Alan Turnbull (2014). Corrosion pitting and environmen-tally assisted small crack growth. Proceedings. Mathematical, Physical, and Engineering Sciences, London: The Royal Society. 20140254, 1-19.

Chowdhury Indrajit, Dasguptu P. Shambhu (2009). Dynamics of Structure and foundation a unified approach. Leiden: CRC Press, 616.

Runov B.T. (1982) Issledovanie i ustranenie vib-ratsii parovykh turboagregatov [Research and elimination of the vibration of the steam turbine units], Moscow, Energoizdat. 352 [in Russian].

Gallager R. (1984) Metod konechnykh elementov. Osnovy [The finite element method. Basedata], Moscow, Mir. 428 [in Russian].

Xu X. P., Han Q. K., Chu F.L. (2016) Nonlinear vibration of a generator rotor with unbalanced magnetic pull considering both dynamic and static eccentricities. Archive of Applied Mechanics. 86, 1521-1536.

Jalali M. H., Ghayour M., Ziaei Rad S., Shahriari B. (2014) Dynamic analysis of a high speed rotor-bearing system. Measurement: Journal of the International Measurement Confederation. 53, 1-9.

Zhang Yang, Yanlong Jiang, Guoyuan Zhang (2017) Bending fault evaluation for the HP-IP rotor system of the nuclear steam turbine based on the dynamic model. Journal of Vibroengineering. 19, 3364-3379.

Minli Yu,, Ningsheng Feng, Eric J. Hahn (2016) Corrigendum to“ An equation decoupling approach to identify the equivalent foundation in rotatin g machi nery using modal parameters” J. Sound Vib. 365, 182 – 198.

Minli Yu, Jike Liu, Ningsheng Feng, Eric J. Hahn (2017) Experimental evaluation of a quasi-modal parameter based rotor foundation identification technique . J. Sound Vib. 411, 165 – 192.

Krasnіkov S. V. (2017). Modelirovanie i analiz vib-ratsionnykh kharakteristik korpusa parovoi tur-biny bol'shoi moshchnosti [Modeling and analysis of the vibration characteristics of a high-power steam turbine hull]. Vіsnik NTU «KhPІ», Kharkіv, 39, 23-26 [in Russian].

Published

2022-12-13

How to Cite

Красников, С. В. (2022). МОДЕЛИРОВАНИЕ И АНАЛИЗ КОЛЕБАНИЙ КОРПУСА ТУРБИНЫ 500 МВт ПРИ СНИЖЕНИИ РАБОЧЕЙ ЧАСТОТЫ. Vehicle and Electronics. Innovative Technologies, (16), 59–66. https://doi.org/10.30977/VEIT.2226-9266.2019.16.0.59

Issue

Section

Select a section