Entropy in automatic control systems of com-plex electrical systems
DOI:
https://doi.org/10.30977/VEIT.2226-9266.2019.16.0.35Abstract
Problem. In the analysis of control systems the basic concepts and definitions are mostly used, namely: transfer functions, laws of regulation, frequency characteristics and some others. However, this may not be sufficient to analyze and describe complex automatic control systems, since it is necessary to use probabilistic methods that use more general definitions and concepts. Such concepts include, for example, entropy of the probability distribution of a controlled process. Goal. The purpose of this paper is to consider the possibility of using the concept of entropy in automatic control systems in general and its use in these systems to evaluate the coordinates of the control of the processes in them. Methodology. Classic methods of probability theory and methods of control of complex technical systems are used. Results. The article deals with some issues of classification of automatic control systems and the possibility of using the concept of entropy to evaluate their efficiency. The basic requirements that must be met to ensure the reliable and economical operation of modern AC power systems are considered. Originality. It is established that one of the main purposes of process control automation is to reduce process uncertainty and process deviations. However, very often the requirement to increase control accuracy is combined with the requirement to increase the speed of the process. This demands faster responses from control systems to work out the required control signals and commands. Practical value. Consideration of entropy enables to: set some general conditions for controlling the operation itself, including the modes of operation of power and complex electrical systems, for example, systems of automatic control of electric traction electric drive based on three-phase AC machine; estimate the coordinates of process control, for example, in the system of automatic control of the operation of the of energy conversion power unit in electric transport.
Keywords: automatic control system; electric motor; parameters; entropy; classification; power system; reliability; economy; electric drive.
References
Попович М. Г., Ковальчук О. В., Пересада С. М., Приймак Б. І. Теорія автоматичного керування. Київ, 2012. 655 с.
Савеленко І. В. Синтез системи автоматичного керування електроприводом на базі синхронного двигуна з постійними магнітами. Збірник наукових праць Кіровоградського національного технічного університету. Техніка в сільськогосподарському виробництві, галузеве машинобудування, автоматизація. 2015. № 28. С. 309–316.
Тарасова В. В., Суховій С. А., Гнатов А. В., Аргун Щ. В. Використання асинхронного двигуна, як об’єкта автоматичного керування. Автомобиль и электроника. Современные технологии: электронное научное специализированное издание. 2017. № 12. С. 166–174.
Бакуменко В. Б., Тарасова В. В., Ручка О. О., Гнатов А. В., Аргун Щ. В., Тарасов К. С. Розрахунок механічної характеристики асинхронного двигуна при наявності в неї мінімального моменту. Автомобіль і електроніка. Сучасні технології. 2019. № 15. С. 17–27.
Аргун Щ. В. Розрахунок основних характеристик тягового асинхронного двигуна для електричної трансмісії міського електробуса. Автомобільний транспорт. 2018. №. 43. С. 36.
Xu J., Hu Z., Tian G. Model reference adaptive vector control of asynchronous motor without speed sensor. 2016 35th Chinese Control Conference (CCC 2016). (Chengdu, 27–29 July 2016). Chengdu, 2016. P. 3195-3199.
Popov A. N. Energy-saving Regulators for Asynchronous Electric Drive Vector Control Systems: Design Procedure and Adaptive Control. 2019 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED). (Moscow, 30 January – 2 February 2019). Moscow, 2019. P. 1–4.
Wan H., Kang J., Fan Q. Research on asynchronous motor control characteristics based on dual SVPWM back to backthree level converter. 2012 Power Engineering and Automation Conference. (Wuhan, 18-20 September 2012). Wuhan, 2012. P. 1–4.
Hnatov A., Arhun Shch., Ponikarovska S., Ulyanets O. Ultracapacitors electrobus for urban transport. IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO-2018). (Kyiv, 24 –26 April, 2018). Kyiv, 2018. P. 539–543.
Hnatov A., Arhun Shch., Ponikarovska S. Energy saving technologies for urban bus transport International Journal of Automotive and Mechanical Engineering. 2017. №14(4). P. 4649–4664.
Гнатов А. В., Пидгора А. В. Автобусный транспорт, назначение и классификация. Электробус на суперконденсаторах. Автомобиль и электроника: Современные технологии: электронное научное специализированное издание. 2017. № 11. С. 5–12.
Patļins A., Hnatov A., Arhun S., Tarasov K., Hnatova H., Mygal V. Researching the model of electric propulsion system for bus using Matlab Simulink. In: USB PROCEEDINGS of 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). (Riga, 7-9 October, 2019). Riga, 2019. pp. 051-1–051-6.
Руденко Ю. Н., Ушаков И. А. Надёжность систем энергетики. Новосибирск, 1986. 328c.
Reference
Popovy`ch M. G., Koval`chuk O. V., Peresa-da S. M., Pry`jmak B. I. (2012) Teoriya avtomaty`chnogo keruvannya. [Automatic control theory.]. [in Ukrainian].
Savelenko I. V. (2015) Sy`ntez sy`stemy` avtomaty`chnogo keruvannya elektropry`vodom na bazi sy`nxronnogo dvy`guna z postijny`my` magnitamy` [Synthesis of a system of automatic control of electric drive based on a synchronous motor with permanent magnets]. Zbirny`k naukovy`x pracz` Kirovograds`kogo nacional`nogo texnichnogo universy`tetu. Texnika v sil`s`kogospodars`komu vy`robny`cztvi, galuzeve mashy`nobuduvannya, avtomaty`zaciya. 28. 309–316. [in Ukrainian].
Tarasova V.V., Suxovij S.A., Gnatov A.V., Arhun Shch. (2017) Vy`kory`stannya asy`nxronnogo dvy`guna, yak ob'yekta avtomaty`chnogo keruvannya [Using an induction motor as an automatic control object]. Avtomobil i elektronika. Sovremennyie tehnologii: elek-tronnoe nauchnoe spetsializiro-vannoe izdanie. 12. 166–174. [in Ukrainian].
Bakumenko V. B., Tarasova V. V., Ruchka O. O., Gnatov A. V., Arhun Shch., Tarasov K. S. (2019) Rozraxunok mexanichnoyi xaraktery`sty`ky` asy`nxronnogo dvy`guna pry` nayavnosti v neyi minimal`nogo momentu [Calculation of mechanical characteristics of an induction motor with minimum torque]. Avtomobil` i elektronika. Suchasni texnologiyi. 15. 17–27. [in Ukrainian].
Arhun Shch. (2018) Rozraxunok osnovny`x xaraktery`sty`k tyagovogo asy`nxronnogo dvy`guna dlya elektry`chnoyi transmisiyi mis`kogo elektrobusa [Calculation of main characteristics of traction induction motor for electric transmission of city bus]. Avtomobil`ny`j transport. 43. 36. [in Ukrainian].
Xu J., Hu Z., Tian G. (2016) Model reference adaptive vector control of asynchronous motor without speed sensor. 2016 35th Chinese Control Conference (CCC 2016). (Chengdu, 27-29 July 2016). 3195–3199.
Popov A. N. (2019) Energy-saving Regulators for Asynchronous Electric Drive Vector Control Systems: Design Procedure and Adaptive Control. 2019 26th International Workshop on Electric Drives: Improvement in Efficiency of Electric Drives (IWED). (Moscow, 30 January - 2 February 2019). 1–4.
Wan H., Kang J., Fan Q. (2012) Research on asynchronous motor control characteristics based on dual SVPWM back to backthree level converter. 2012 Power Engineering and Automation Conference. (Wuhan, 18-20 September 2012). 1–4.
Hnatov A., Arhun Shch., Ponikarovska S., Ulyanets O. (2018) Ultracapacitors electrobus for urban transport. IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO-2018). (Kyiv, 24–26 April, 2018). 539–543.
Hnatov A., Arhun Shch., Ponikarovska S. (2017) Energy saving technologies for urban bus transport International Journal of Automotive and Mechanical Engineering. №14(4). 4649-4664.
Hnatov A., Pydhora A. (2017) Avtobusnyiy transport, naznachenie i klassifikatsiya. Elektrobus na superkondensatorah. [Bus transport, purpose and classification. Electric bus on supercapacitors.] Avtomobil i elektronika: Sovremennyie tehnologii: elektronnoe nauchnoe spetsiali-zirovannoe izdanie. № 11. 5-12.
Patļins A., Hnatov A., Arhun S., Tarasov K., Hnatova H., Mygal V. (2019) Researching the model of electric propulsion system for bus using Matlab Simulink. In: USB PROCEEDINGS of 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON). (Riga, 7-9 October, 2019). P. 051-1-051-6.
Rudenko Yu.N., Ushakov I.A. (1986) NadYozhnost sistem energetiki [Reliability of power systems]. Novosibirsk. 328. [in Russian].
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Андрій Вікторович Гнатов, Щасяна Валіковна Аргун, Кирило Сергійович Тарасов, Валентина Всеволодівна Тарасова, Артем Сергійович Суханов, Павло В’ячеславович Чуйко
This work is licensed under a Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
3. Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи.