Experimental Study of “Direct Current Pas-sage” Tools by Magnetic-Pulse Metal Processing

Authors

  • Евгений Александрович Чаплыгин Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine
  • Елена Федоровна Еремина Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine
  • Светлана Александровна Шиндерук Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine
  • Александр Алексеевич Коряк Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine
  • Евгений Евгеньевич Черный Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine., Ukraine

DOI:

https://doi.org/10.30977/VEIT.2226-9266.2019.15.0.88

Abstract

Problem. Theoretical calculations of the “direct current passage” tools characteristics of the magnetic-pulse metal processing technology should be compared with actual results. To do this, it is necessary to measure the characteristics of the transverse current distribution over the surface of the sheet metal between the contacts connecting the real power source, as well as measure the integral values of this signal at a low-voltage and high-voltage magnetic-pulse installation. Goal. The goal is measuring the transverse distribution of the pulsed current linear density on the surface of the sheet metal between the point contacts of the power source with different geometry of their connection. Methodology. Measuring the transverse current distribution over the surface integral characteristics of the sheet metal is carried out between the contacts of the connection of a real power source ‑ a low-voltage and high-voltage magnetic-pulse installation; the integral values are determined by the Rogowsky belt around the area under investigation followed by integrating the received signal. Results. Comparison of theory and experiment shows that in the case of reducing the distance between the contacts of the source connection, the degree of transverse concentration of the flowing current increases. With a sufficiently small distance the concentration level can reach the values of 65...80%. Originality. The degree of transverse concentration of the flowing current relative to the center of the system in the operating frequency range of 1,8...22 kHz depends very little on its temporal characteristics. The level of the transverse current concentration in the conditionally allocated band connecting the contacts depends significantly on the ratio of the width of this band and the transverse dimensions of the contact connection. Practical value. Using the obtained results will make possible to create new, more efficient tools of “direct current passage”.


Key words: direct current passage; linear density; transverse concentration; temporal characteristics; magnetic impulse attraction; electrodynamic forces.

Author Biographies

Евгений Александрович Чаплыгин, Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

Ph.D., Assoc. Prof. of Physics Chair

Елена Федоровна Еремина, Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

Ph.D., Assoc. Prof. of Physics Chair

Светлана Александровна Шиндерук, Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

Ph.D., Assoc. Prof. of Physics Chair

Александр Алексеевич Коряк, Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

Assoc. Prof. of Machine Parts and the Theory of Mechanisms and Machines Chair

Евгений Евгеньевич Черный, Kharkov National Automobile and Highway University, 25, Yaroslava Mudrogo str., Kharkiv, 61002, Ukraine.

student

References

Eguia I., Mangas A., Iturbe R., Gutierrez M. A. Electromagnetic forming of longitudinal strengthening ribs in roll formed automotive profiles. ICHSF Proceedings of 4th International Conference on High Speed Forming (COLUMBUS 9 –10 March 2010). 2010. pp.198-207.

Batygin Y., Barbashova M., Sabokar O. Electromagnetic Metal Forming for Advanced Processing Technologies. Springer International Publishing AG. 2018. 93 p.

Welcome to BETAG Innovation. (2012). URL: http://www.betaginnovation.com (дата обращения 2.05.2019).

Mamalis A. G., Manolakos D. E., Kladas A. G., Koumoutsos A. K. Electromagneitc forming and powder processing: trends and developments. Applied Mechanics Reviews. 2004. №57(4). P. 299-324.

Савич А. С., Ивашко В. С., Савич Е. Л. Ремонт кузовов легковых автомобилей. Учебное пособие. Инфра-М. 2014. 320 с.

Thaddeus M. How to restore Classic Car Bodywork: New Updated & Revised Edition. Veloce publ. 2015. 128 р.

Porter L. Classic Car Bodywork Manual: The complete, illustrated step-by-step guide. 5th edition. Porter Pub. Ltd. 2018. 300 p.

Psyk V., Risch, D., Kinsey B. L., Tekkaya A. E., Kleiner M. Electromagnetic forming – A review. Journal of Material Process Technology. 2011. №211, P. 787-829.

Batygin Yu.V., Golovashchenko S.F., Gnatov A.V. Pulsed electromagnetic attraction of sheet metals – Fundamentals and perspective applications. Journal of Materials Processing Technology. 2013. № 213 (3). P. 444–452.

Batygin Yu. V., Golovashchenko S. F., Gnatov A. V. Pulsed electromagnetic attraction of nonmagnetic sheet metals. Journal of Materials Processing Technology. 2014. № 214 (2). P. 390-401.

Яворский Б. М., Детлаф А. А., Лебедев А. К. Справочник по физике: для инженеров и студентов вузов. 8-е изд., переработанное и исправленное. ООО «Издательство Оникс». 2006. 1056 с.

Imbert J. M., Winkler S. L., Worswick M. J., Oliveira D. A., Golovashchenko S. The effect of tool-sheet interaction on damage evolution in electromagnetic forming of aluminum alloy sheet. Journal of Engineering Materials and Technology. 2005. №127(1). P. 369-379.

Бондаренко А. Ю., Финкельштейн В. Б., Гаврилова Т. В. Внешняя рихтовка кузовов автотранспорта с помощью электродинамических систем при прямом пропускании импульсного тока. Вісник НТУ «ХПІ». Харків. 2014. №9(1052). С. 66-72.

References

Eguia I., Mangas,A., Iturbe R., Gutierrez M. A. (2010). Electromagnetic forming of longitudinal strengthening ribs in roll formed automotive profiles. ICHSF Proceedings of 4th International Conference on High Speed Forming (COLUMBUS 9 –10 March 2010), 198-207.

Batygin Y., Barbashova M., Sabokar O. (2018) Electromagnetic Metal Forming for Advanced Processing Technologies. Cham: Springer International Publishing AG.

Welcome to BETAG Innovation. Retrived from: http://www.betaginnovation.com (accessed: 02.05.2019).

Mamalis A. G., Manolakos D. E., Kladas A. G., Koumoutsos A. K. (2004) Electromagneitc forming and powder processing: trends and developments. Applied Mechanics Reviews, 57(4), 299-324.

Savich A. S., Ivashko V. S., Savich E. L. (2014) Remont kuzovov legkovyh avtomobilej. Uchebnoe posobie [Car body repair. Tutorial.] Kiev: Infra-M [in Russian].

Thaddeus M. (2015) How to restore Classic Car Bodywork. New Updated & Revised Edition. Dorchester: Veloce publ.

Porter L. (2018) Classic Car Bodywork Manual. The complete, illustrated step-by-step guide. 5th edition. London: Porter Pub. Ltd.

Psyk V., Risch, D., Kinsey B.L., Tekkaya A.E., Kleiner M. (2011) Electromagnetic forming – A review. Journal of Material Process Technology, 211, 787-829.

Batygin Yu. V., Golovashchenko S. F., Gnatov A.V. (2013) Pulsed electromagnetic attraction of sheet metals – Fundamentals and perspective applications. Journal of Materials Processing Technology, 213 (3), 444–452.

Batygin Yu. V., Golovashchenko S. F., Gnatov A. V. (2014) Pulsed electromagnetic attraction of nonmagnetic sheet metals. Journal of Materials Processing Technology, 214 (2), 390-401.

Javorskij B. M., Detlaf A. A., Lebedev A. K. (2006) Spravochnik po fizike: dlja inzhenerov i studentov vuzov [Physics handbook for engineers and students of universities]. 8-e izd., pererabotannoe i ispravlennoe. Moskva: OOO «Izdatel'stvo Oniks» [in Russian].

Imbert J.M., Winkler S.L., Worswick M.J., Oliveira D.A., Golovashchenko S. (2005) The effect of tool-sheet interaction on damage evolution in electromagnetic forming of aluminum alloy sheet. Journal of Engineering Materials and Technology, 127(1), 369-379.

Bondarenko A.Ju., Finkel'shtejn V.B., Gavrilova T.V. (2014) Vneshnjaja rihtovka kuzovov avtotransporta s pomoshh'ju jelektrodinamicheskih sistem pri prjamom propuskanii impul'snogo toka [External straightening basket of the motor transport by means of electro dynamic of the systems at direct drive pulsed current] Vіsnik NTU «HPІ», 9(1052), 66-72 [in Russian].

Published

2022-12-13

How to Cite

Чаплыгин, Е. А., Еремина, Е. Ф., Шиндерук, С. А., Коряк, А. А., & Черный, Е. Е. (2022). Experimental Study of “Direct Current Pas-sage” Tools by Magnetic-Pulse Metal Processing. Vehicle and Electronics. Innovative Technologies, (15), 88–93. https://doi.org/10.30977/VEIT.2226-9266.2019.15.0.88

Issue

Section

EQUIPMENT FOR MANUFACTURE AND REPAIR OF TRANSPORTATION. SERVICE AND TECHNICAL REVIEW OF CARS