Analysis of the nonstationarity of the original signal of the measuring channel of the crowding of technically complex objects
DOI:
https://doi.org/10.30977/VEIT.2018.14.0.4Abstract
Problem. Technically complex facilities such as nuclear, thermal, hydroelectric and the like occupy an important place in industrial production. Their main feature is that they operate continuously and to control technological processes as well as diagnose their technical condition using multi-parameter spatially distributed measuring information systems. In general, the output signal of such measuring systems is stationary. But in the process of dynamically changing the load on the object, its technological regimes also change. This leads to the appearance of nonstationarity of the output signals of the measuring systems. In this case, the stationarity interval is reduced from tens of minutes to hundreds of milliseconds. At the input of control systems and diagnostics received measurement data that are non-stationary in nature. This is especially true for pressure measuring channels. Thus, there is the problem of eliminating the non-stationarity of the output signals of the pressure measuring channels. At present, the main method of eliminating nonstationarity in pressure measuring channels is the method of averaging output signals over the entire time interval of measurements. But this in turn leads to an increase in inertia and a decrease in the accuracy of control and diagnostic systems. In addition, there appear "dead" zones in the robot of diagnostic systems as a result of smoothing peaks and steps in the output signals of object measurement information systems. All this together requires the search for more effective methods of eliminating the non-stationarity of the output signals of multi-parameter spatially distributed measuring information systems of technically complex objects. Purpose. Analysis of the nonstationarity of the output signal of the pressure channel to improve the accuracy and reliability of pressure measurements due to preliminary statistical processing in the measurement process. Methodology. The analytical method is the method of statistical processing of large data arrays of current measurements. The analysis methods are the analysis of the signal in the time and frequency obdastiah. Result. The analysis of the nonstationarity of the output signal of the pressure channel using Data Mining technology has allowed us to develop a method for searching large amounts of current measurements of unobvious, objective patterns, periodicities, trends, stationarity intervals, as well as checking them on new measuring kits. Original. The developed method of eliminating the nonstationarity of the output signal of the pressure measuring channel can be implemented in object intellectual measuring information systems. Its use in the process of current pressure measurements allows to reduce the dynamic error and, thereby, increase the reliability of measurements. Practical value. The obtained results of the analysis of the nonstationarity of the output signal of the pressure measuring channel can be used in the modeling and design of measuring information systems of technically complex objects.
Keywords: pressure measuring channel; non-stationary signal; technological process; technically complex object.
References
Nason, G. P. (2006). Stationary and Non-stationary Time Series. In Statistics in Volcanology. Special Publications of IAVCEI (pp. 129–143). https://doi.org/10.1137/1.9780898717822.
Perraudin, N., & Vandergheynst, P. (2017). Stationary Signal Processing on Graphs. IEEE Transactions on Signal Processing, 65(13), 3462–3477. https://doi.org/10.1109/TSP.2017.2690388.
Hammond, J. K., & White, P. R. (1996). The analysis of non-stationary signals using time-frequency methods. Journal of Sound and Vibration, 190(3), 419–447. https://doi.org/10.1006/jsvi.1996.0072.
Gramfort, A., Strohmeier, D., Haueisen, J., Hämäläinen, M. S., & Kowalski, M. (2013). Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations. NeuroImage, 70, 410–422. https://doi.org/10.1016/j.neuroimage.2012.12.051
Blei, D., Carin, L., & Dunson, D. (2010). Probabilistic topic models. IEEE Signal Processing Magazine, 27(6), 55–65. https://doi.org/10.1109/MSP.2010.938079.
Uma Maheswari, R., & Umamaheswari, R. (2017, February 15). Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train – A contemporary survey. Mechanical Systems and Signal Processing. Academic Press. https://doi.org/10.1016/j.ymssp.2016.07.046.
Abdi, H. (2010). Signal detection theory. In International Encyclopedia of Education (pp. 407–410). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-044894-7.01364-6.
Wu, Z., Huang, N. E., Long, S. R., & Peng, C.-K. (2007). On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences, 104(38), 14889–14894. https://doi.org/10.1073/pnas.0701020104.
Коvаl А. О., Коvаl О. А. (2017). Prostorovo rozpodileni intelectualni vimiruvalni informazijni sistemy [Spatially distributed intelligent measurement information systems] : monografija. Kharkiv : Lider, 146 [in Ukrainian].
MI 1317-2004 GSIR. (2004). Resultaty i characteristiki pogrechnosti izmerenij. Formi predstavlenija. Sposobi ispolzovanija. [Results and characteristics of measurement error. Forms of representation. Methods of use when testing product samples and monitoring their parameters]. Moskau : Federal State Unitary Enterprise All-Russian Research Institute of Metrological Service, 53. [in Russian].
Mackenzie, E. a., Crossey, J., dePablo, a., Ferguson, W., De Pablo, a, & Ferguson, W. (2010). On-line monitoring and diagnostics for power transformers. Conference Record of the 2010 IEEE International Symposium on Electrical Insulation (ISEI), San Diego, 1–5. https://doi.org/10.1109/ELINSL.2010.5549734.
Hu, K., Ivanov, P. C., Chen, Z., Carpena, P., & Stanley, H. E. (2001). Effect of trends on detrended fluctuation analysis. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 19. https://doi.org/10.1103/PhysRevE.64.011114.
Koval A. O. (2016). Wdoskonalenja metodiv wiznachenja dinamicnich characteristik wimiruvalnich canaliv tisku. [Improvement of methods for determining the dynamic characteristics of measuring channels of pressure] : dis. … cand. techn. nauk : 05.01.02. Khakiv. 224 [in Ukrainian].
Koval A. O., Poljarus O. V., Koval O. A. (2015). Wikoristanja metodu schumiv ta online diagnostiki dlja wdoskonalenja metrologichnogo zabezpecennja na technogenno-nebezpecnich objektach. [Using the method of noise and online diagnostics to improve metrological support on technogenically hazardous objects]. Visnik NTU KHPI, Kharkiv : KHPI, №35, 152-156 [in Ukrainian].
Koval A. O. (2017). Normuvanja i wiznachenja dinamicnich charecteristik wimiruvalnogo canalu tisku.[The standardization and definition of dynamic characteristics of the pressure measuring channel]. Metrologija, informacionno-izmeritelnie technologii i sistemi(MIITS). Kharkov national university of radioelectronics, National scientific centre "Institute of metrology"Kharkiv,(24-25 october 2017), 68-69 [in Ukrainian].
Koval A. O. (2017). Actualni problemi pobudowi prostorovo-rozpodilenich intelectualnich wimiruvalnich informacijnich sistem. [Actual problems of construction of spatially-distributed intellectual metering information systems]. Metrologija, informacionno-izmeritelnie technologii i sistemi(MIITS). Kharkov national university of radioelectronics, National scientific centre "Institute of metrology"Kharkiv,(24-25 october 2017), 156 [in Ukrainian].
Iba, H., & Aranha, C. C. (2012). Trend analysis. In Adaptation, Learning, and Optimization (Vol. 11, pp. 123–140). Springer Verlag. https://doi.org/10.1007/978-3-642-27648-4_5.
Kovács, G., Bakos, G., & Noyes, R. W. (2005, January 11). A trend filtering algorithm for wide-field variability surveys. Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1111/j.1365-2966.2004.08479.x.
ПРИСТАТЕЙНА БІБЛІОГРАФІЯ ДСТУ
Nason, G. P. (2006). Stationary and Non-stationary Time Series. In Statistics in Volcanology. Special Publications of IAVCEI (pp. 129–143). https://doi.org/10.1137/1.9780898717822.
Perraudin, N., & Vandergheynst, P. (2017). Stationary Signal Processing on Graphs. IEEE Transactions on Signal Processing, 65(13), 3462–3477. https://doi.org/10.1109/TSP.2017.2690388.
Hammond, J. K., & White, P. R. (1996). The analysis of non-stationary signals using time-frequency methods. Journal of Sound and Vibration, 190(3), 419–447. https://doi.org/10.1006/jsvi.1996.0072.
Gramfort, A., Strohmeier, D., Haueisen, J., Hämäläinen, M. S., & Kowalski, M. (2013). Time-frequency mixed-norm estimates: Sparse M/EEG imaging with non-stationary source activations. NeuroImage, 70, 410–422. https://doi.org/10.1016/j.neuroimage.2012.12.051.
Blei, D., Carin, L., & Dunson, D. (2010). Probabilistic topic models. IEEE Signal Processing Magazine, 27(6), 55–65. https://doi.org/10.1109/MSP.2010.938079.
Uma Maheswari, R., & Umamaheswari, R. (2017, February 15). Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train – A contemporary survey. Mechanical Systems and Signal Processing. Academic Press. https://doi.org/10.1016/j.ymssp.2016.07.046.
Abdi, H. (2010). Signal detection theory. In International Encyclopedia of Education (pp. 407–410). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-044894-7.01364-6.
Wu, Z., Huang, N. E., Long, S. R., & Peng, C.-K. (2007). On the trend, detrending, and variability of nonlinear and nonstationary time series. Proceedings of the National Academy of Sciences, 104(38), 14889–14894. https://doi.org/10.1073/pnas.0701020104.
Коваль А. О., Коваль О. А. Просторово розподілені інтелектуальні вимірювальні інформаційні системи: монографія. Харків : Лідер, 2017. 146 с.
МИ 1317-2004 ГСИР. Видання. Результаты и характеристики погрешности измерений. Формы представления. Способы использования при испытаниях образцов продукции и контроле их параметров. [Чинний від 2004-12-20]. Вид. офіц. Москва, 2004. 53 с. (Інформація та документація).
Mackenzie, E. a., Crossey, J., dePablo, a., Ferguson, W., De Pablo, a, & Ferguson, W. (2010). On-line monitoring and diagnostics for power transformers. Conference Record of the 2010 IEEE International Symposium on Electrical Insulation (ISEI), San Diego, 1–5. https://doi.org/10.1109/ELINSL.2010.5549734
Hu, K., Ivanov, P. C., Chen, Z., Carpena, P., & Stanley, H. E. (2001). Effect of trends on detrended fluctuation analysis. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 64(1), 19. https://doi.org/10.1103/PhysRevE.64.011114
Коваль О. А. Вдосконалення методів визначення динамічних характеристик вимірювальних каналів тиску : дис. … канд. техн. наук : 05.01.02. Харків. 2016. 224 с.
Коваль А. О. , Полярус О. В. , Коваль О. А. Використання методу шумів та online діагностики для вдосконалення метрологічного забезпечення на техногенно небезпечних об'єктах. Вісник НТУ "ХПІ". Харків, 2015. № 35. С. 152–156.
Коваль А. О. Нормування і визначення динамічних характеристик вимірювального каналу тиску. Метрология, информационно-измерительные технологии и системы (МИИТС-2017) : тези доп. VI міжн. наук.-практ. конф. ( м. Харків, 24-25 жовтня). 2017. С. 68-69.
Коваль О. А. Актуальні проблеми побудови просторово-розподілених інтелектуальних вимірювальних інформаційних систем. Метрология, информационно-измерительные технологии и системы (МИИТС-2017) : тези доп. VI міжн. наук.-практ. конф. ( м. Харків, 24-25 жовтня). 2017. С.156.
Iba, H., & Aranha, C. C. (2012). Trend analysis. In Adaptation, Learning, and Optimization (Vol. 11, pp. 123–140). Springer Verlag. https://doi.org/10.1007/978-3-642-27648-4_5.
Kovács, G., Bakos, G., & Noyes, R. W. (2005, January 11). A trend filtering algorithm for wide-field variability surveys. Monthly Notices of the Royal Astronomical Society. https://doi.org/10.1111/j.1365-2966.2004.08479.x.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Андрій Олександрович Коваль, Сергій Володимирович Мінка
This work is licensed under a Creative Commons Attribution 4.0 International License.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
3. Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи.