Concept of vehicles development based on convergence of intellectual critical technologies

Authors

  • Олег Якович Ніконов Kharkov National Automobile and Highway University, Ukraine
  • Костянтин Віталійович Аврамов IPMach, Kharkiv, Dmitry Pozharsky str., 2/10, Ukraine
  • Борис Валерійович Успенський IPMach, Kharkiv, Dmitry Pozharsky str., 2/10, Ukraine

DOI:

https://doi.org/10.30977/VEIT.2018.13.0.54

Abstract

Today, the scientific and technological sphere has become the main arena of competition of states in the world, and the possession of so-called «critical technologies» (CT) is used as one of the important instruments of geopolitics. Such technologies are crucial for expanding the capabilities of the state's defense capabilities and achieving the goals of national security, primarily military, military-economic and scientific and technological security. Selection of CT is used to determine the priorities of scientific and technological development of states and military-technical policy and are crucial for the process of creating promising weapons and military equipment. The purpose of the article is to analyze the main trends and approaches to the concept of vehicle development based on the convergence of intellectual critical technologies. For the effective development of vehicles it is necessary to use the technology of virtual reality, synergistic approach, evolutionary methods of modeling, methods of deep learning of artificial multilayer neural networks. Advanced technology allows you to reduce the cost of developing new models by reducing the number of real prototypes, each of which is created individually and requires significant costs. Despite all the disadvantages, improved methods of deep learning open up new opportunities for an effective analysis of large volumes of unstructured data. Companies that use deep training in their tasks will be able to get more accurate analytics results without having to spend a lot of time learning the system. The main tendencies and approaches to the concept of the development of vehicles on the basis of convergence of intellectual critical technologies are analyzed. National CTs are of key importance for expanding capabilities of Ukraine and achieving the goals of national security, in particular, scientific and technological security.

Key words:

vehicles; information technologies; critical technologies; artificial intelligence; synergetic approach; evolutionary methods.

Author Biographies

Олег Якович Ніконов, Kharkov National Automobile and Highway University

professor, dr. eng. sc.

Костянтин Віталійович Аврамов, IPMach, Kharkiv, Dmitry Pozharsky str., 2/10

professor, dr. eng. sc.

Борис Валерійович Успенський, IPMach, Kharkiv, Dmitry Pozharsky str., 2/10

cand. eng. sc.

References

Synerhetychnyi avtomobil. Teoriia i praktyka / O.V. Bazhynov, O.P. Smyrnov, S.A. Sierikov, V.Ya. Dvadnenko. – Kharkiv: KhNADU, 2011. – 236 s. [in Ukrainian].

Aleksiiev V.O. Mekhatronika, telematyka, synerhetyka u transportnykh dodatkakh / V.O. Aleksiiev, O.P. Aleksiiev, O.Ya. Nikonov. – Kharkiv: KhNADU, 2012. – 212 s. [in Ukrainian].

Aleksandrov Ye.Ye. Osnovy avtomatyky i tankovi avtomatychni systemy / Ye.Ye. Aleksandrov, M.O. Kechev, O.Ya. Nikonov. – Kharkiv: NTU «KhPI», 2002. – 163 s. [in Ukrainian].

Nikonov O.Ya. Robotyzyrovannыe avtomobyly: sovremennыe tekhnolohyy y perspektyvы razvytyia / O.Ya. Nikonov, T.O. Polosukhyna // Avtomobyl y Эlektronyka. Sovremennыe tekhnolohyy. – Kharkov: KhNADU, 2013. – №5. – S. 38-42. [in Russian].

Jackson K.L. Architecting Cloud Computing Solutions: Build cloud strategies that align technology and economics while effectively managing risk / K.L. Jackson, S. Goessling. – Birmingham, UK: Packt Publishing Ltd, 2018. – 378 р.

Hinton G. A practical guide to training restricted Boltzmann machines / G. Hinton // Toronto: Machine Learning Group, University of Toronto. – 2010. – Tech. Rep. 2010-000.

Thakral S. Virtual Reality and M-Learning /S. Thakral, P. Manhas, C. Kumar // International Journal of Electronic Engineering Research. – 2010. – Vol. 2. – №5. – P. 659-661.

Holland J.H. Adaptation in natural and artificial systems. An introductory analysis with application to biology, control, and artificial intelligence / Holland J.H. – London: Bradford book edition, 1994. – 211 p.

Spooner J.T. Stable adaptive control and estimation for nonlinear systems: neural and fuzzy approximator techniques / J.T. Spooner. – New York: Wiley-Interscience, 2002. – 545 p.

Goldberg D.E. Genetic Algorithms in Search Optimizations and Machine Learning / Goldberg D.E. – Addison-Wesly, 1989. – 412 p.

Shuliakov V. Application of Adaptive Neuro-Fuzzy Regulators in the Controlled System by the Vehicle Suspension / V. Shuliakov, O. Nikonov, V. Fastovec // International Journal of Automation, Control and Intelligent Systems. – Vol.1, №3, 2015. – P. 66-72.

Metodyi robastnoho, neiro-nechetkoho i adaptyvnoho upravlenyia / Pod red. N.D. Ehupova. – M.: Yzd-vo MHTU ym. Baumana, 2002. – 744 s. [in Russian].

Пристатейна бібліографія ДСТУ

Синергетичний автомобіль. Теорія і практика / О.В. Бажинов, О.П. Смирнов, С.А. Сєріков, В.Я. Двадненко. – Харків: ХНАДУ, 2011. – 236 с.

Алексієв В.О. Мехатроніка, телематика, сине-ргетика у транспортних додатках / В.О. Алексієв, О.П. Алексієв, О.Я. Ніко¬нов. – Харків: ХНАДУ, 2012. – 212 с.

Александров Є.Є. Основи автоматики і танко-ві автоматичні системи / Є.Є. Алек¬сандров, М.О. Кечев, О.Я. Ніконов. – Харків: НТУ «ХПІ», 2002. – 163 с.

Никонов О.Я. Роботизированные автомобили: современные технологии и перспективы раз-вития / О.Я. Никонов, Т.О. Полосухина // Ав-томобиль и Электроника. Современные тех-нологии. – Харьков: ХНАДУ, 2013. – №5. – С. 38-42.

Jackson K.L. Architecting Cloud Computing Solutions: Build cloud strategies that align technology and economics while effectively managing risk / K.L. Jackson, S. Goessling. – Birmingham, UK: Packt Publishing Ltd, 2018. – 378 р.

Hinton G. A practical guide to training restricted Boltzmann machines / G. Hinton // Toronto: Machine Learning Group, University of Toron-to. – 2010. – Tech. Rep. 2010-000.

Thakral S. Virtual Reality and M-Learning /S. Thakral, P. Manhas, C. Kumar // International Journal of Electronic Engineering Research. – 2010. – Vol. 2. – №5. – P. 659-661.

Holland J.H. Adaptation in natural and artificial systems. An introductory analysis with appli-cation to biology, control, and artificial intelli-gence / Holland J.H. – London: Bradford book edition, 1994. – 211 p.

Spooner J.T. Stable adaptive control and estima-tion for nonlinear systems: neural and fuzzy approximator techniques / J.T. Spooner. – New York: Wiley-Interscience, 2002. – 545 p.

Goldberg D.E. Genetic Algorithms in Search Optimizations and Machine Learning / Goldberg D.E. – Addison-Wesly, 1989. – 412 p.

Shuliakov V. Application of Adaptive Neuro-Fuzzy Regulators in the Controlled System by the Vehicle Suspension / V. Shuliakov, O. Nikonov, V. Fastovec // International Journal of Automation, Control and Intelligent Systems. – Vol.1, №3, 2015. – P. 66-72.

Методы робастного, нейро-нечеткого и ада-птивного управления / Под ред. Н.Д. Егупова. – М.: Изд-во МГТУ им. Баумана, 2002. – 744 c.

Published

2018-05-16

How to Cite

Ніконов, О. Я., Аврамов, К. В., & Успенський, Б. В. (2018). Concept of vehicles development based on convergence of intellectual critical technologies. Vehicle and Electronics. Innovative Technologies, (13), 54–58. https://doi.org/10.30977/VEIT.2018.13.0.54

Issue

Section

INTELLIGENT TRANSPORT MANAGEMENT SYSTEMS. SYNERGETIC SYSTEMS OF ECO-VEHICLES