Simulation of the connecting rod damage when fluid enters the engine cylinder

Authors

  • Александр Эдуардович Хрулев International Motor Bureau, Shkolnaya str., 15, Nemeshaevo, Borodyansky district, Kiev region, 07853, Ukraine, Ukraine

DOI:

https://doi.org/10.30977/VEIT.2020.17.0.5

Abstract

Problem. The patterns of a conrod stem deformation during compression of air with a liquid in the internal combustion engine cylinder are considered, and the stem deformation when liquid enters the cylinder (hydrolock) is calculated. It is noted that despite the well-known nature of this damage, no quantitative data are available, which often makes it difficult to determine the damage causes in the practice of ICE operation. Goal of the work is to study the connecting rod deformation mechanism during the loss of stem stability due to hydrolock in the cylinder to obtain quantitative characteristics of this phenomenon, suitable for use in practice to determine the failure causes. Methodology includes simulation of the compression process with a liquid, as well as simulation of the deformation and the buckling of the conrod stem under axial compression. A numerical integration of a system of differential equations describing the change in pressure and air temperature with a liquid in a cylinder by the crankshaft rotation angle is carried out with the initial conditions that were obtained using the standard ICE cycle calculation program. Then the dependence of maximum pressure in the cylinder and the conrod buckling from the combustion chamber filling ratio was determined. Results. For the found strains, the axial deformation of the conrod stem was simulated using the finite element method, the buckling shape of the stem and the stress were determined, and the dependence of the longitudinal bending on the axial deformation of the stem was determined. The simulation results were compared with experimental data on the conrods damages in the ICE operation, as well as with the results of stress calculations using classical methods. Originality. For the first time, a quantitative link was determined between the liquid amount that fell into the internal combustion engine cylinder during hydrolock, the shape of the conrod stem, its axial deformation, and longitudinal bending in case of loss of stability. Practical value. The results can be used in practice when searching for the causes of the internal combustion engines faults, including simulation the ICE damages, in order to clarify the symptoms and causes of the faults associated with hydrolock. Based on the results of the study, the feasibility of the practical application of the damage simulation in studying the fault causes is substantiated.

 

Keywords: internal combustion engine, connecting rod, hydrolock, buckling, simulation.

Author Biography

Александр Эдуардович Хрулев, International Motor Bureau, Shkolnaya str., 15, Nemeshaevo, Borodyansky district, Kiev region, 07853, Ukraine

Ph.D., Senior Researcher, forensic expert on specialty 10.2 "Study of the vehicles technical condition"

References

Хрулев А.Э., Кочуренко Ю.В. Методика определения причины неисправности ДВС при тяжелых эксплуатационных повреждениях. Двигатели внутреннего сгорания. 1. 2017. С. 52-60. DOI: 10.20998/0419-8719.2017.1.10.

Хрулев А.Э. Методика исследования и определения причин тяжелых повреждений ДВС в эксплуатации. Сборник тезисов докладов международной научно-технической конференции "Двигатель-2017", посвященной 110-летию специальности "Поршневые двигатели" в МГТУ им.Н.Э.Баумана. Москва. МГТУ им. Н.Э.Баумана. 2017. С. 22-23.

Хрулев А.Э., Лосавио С.К., Дроздовский В.Б. Экспертиза технического состояния и причины неисправностей автомобильной техники. Москва, Изд-во АБС, 2019. 966 с.

Хрулев А., Самохин С. Гидроудар "замедленного действия". 2011. 08. С.36-39.

Greuter E., Zima S. Engine Failure Analysis. SAE International. Warrendale. USA, 2012. 568 p.

Компоненты двигателя и фильтры: дефекты, их причины и профилактика. Пер.с англ., Mahle GmbH, 2016. 77с.

Kumar P.S. and Kumar K. Buckling Analysis and Shape Optimization of Connecting Rod using FEA. Journal on Emerging trends in Model. and Manufact, 2016, no.2(2), pp. 44-50.

Shenoy P.S. and Fatemi A. Dynamic analysis of loads and stresses in connecting rods. DOI: 10.1243/ 09544062JMES105. J.Mechanical Engineering Science. Proc.IMechE, 2006, vol. 220 Part C, pp. 615-624.

Kumar M. and Prajapati S.N. Design, Buckling and Fatigue Failure Analysis of Connecting Rod: A Review. DOI: 10.22161/ijaers.4.7.7. International Journal of Advanced Engineering Research and Science (IJAERS), 2017, vol.4 (7), pp. 39-44.

Nagaraju K.L., Chandan R. Buckling Analysis Of Connecting Rod. International Research Journal of Engineering and Technology (IRJET), 2016; vol. 03 (08), pp. 1358-1361.

Грехов Л.В., Иващенко Н.А., Марков В.А. и др Машиностроение. Энциклопедия. Двигатели внутреннего сгорания. Т.IV–14. Москва. Машиностроение, 2013. 784 с.

Heywood J.B. Internal Combustion Engine Fundamentals. McGraw–Hill Series in Mechanical Engineering. McGraw–Hill, Inc. USA, 1988. 930p.

Дьяченко В.Г. Теория двигателей внутреннего сгорания. Учебник. Перевод с украинского языка. Харьков. ХНАДУ, 2009. 500 с.

Левтеров А.М., Левтерова Л.И. Анализ математических моделей механизма сажеобразования при сжигании углеводородных топлив, Вісник НТУ «ХПІ». Серія: Математичне моделювання в техніці та технологіях. Харків, НТУ «ХПІ», 2013, №5 (979). С. 130-141.

Lotus Engineering Software (LESOFT). Group Lotus PLC, 2019. URL: http://www.lesoft.co (дата обращения 20.10.2019).

Феодосьев В.И. Сопротивление материалов: учебник для вузов. 17-е изд., испр. Москва, Издательство МГТУ им. Н.Э.Баумана, 2018. 542 с.

Gere J.M. Mechanics of Materials. 6th Edition. Belmont, USA, Brooks/Cole-Thomson Learning, 2004. 940 p.

Биргер И.А., Мавлютов Р.Р. Сопротивление материалов. Москва. Наука, 1986. 560 с.

Фаворин М.В. Моменты инерции тел. Справочник. Изд. 2-е, перераб. и доп. Москва. Машиностроение, 1977. 511с.

Сорокин В.Г. Стали и сплавы. Марочник. Москва. "Интермет Инжиниринг", 2001. 608 с.

ANSYS Free Student Software Downloads. ANSYS, Inc., 2019. URL: https://www.ansys. com/academic/free-student-products (дата обращения 20.10.2019).

Федорова Н.Н., Вальгер С.А., Данилов М.Н., Захарова Ю.В. Основы работы в ANSYS 17. Москва. ДМК Пресс, 2017. 210 с.

References

Khrulev A.E., Kochurenko Y.V. Metodika opredeleniya prichiny neispravnosti DVS pri tyajelyh ekspluatazcionnyh povrejdeniyah [Method for determining the cause of the ICE failure for severe damages in operation]. DOI: 10.20998/0419-8719.2017.1.10. Internal Combustion Engines, 2017, 1, pp. 52-60.

Khrulev A.E. Metodika issledovaniya и opredeleniya prichin tyajelyh povrejdeniy DVS v ekspluatazcii [Methods of study and determination of the causes of heavy duty damages of internal combustion engines]. Theses of the International scientific and technical conference "Engine-2017", Moscow, MSTU N.E.Bauman, 2017, pp. 22–23.

Khrulev A., Drozdovsky V., Losavio S. Ekspertiza tekhnicheskogo sostoyaniya i prichiny neispravnostei avtomobilnoi tekhniki [Expertize of the technical condition and the vehicle fault causes]. Moscow, Publ. house ABS, 2019. 966 p.

Khrulev A., Samokhin S. Gidroudar "zamedlennogo deistviya" [Hydrolock "delayed action"]. Car and service, 2011, 08, pp. 36-39.

Greuter E., Zima S. Engine Failure Analysis. Internal Combustion Engine Failure and Their Causes. ISBN 978-0-7680-0885-2. SAE International, R-320, Warrendale, USA, 2012. 568 p.

Engine components and filters. Damage profiles, probable causes and prevention. Technical information MS3-1109, Mahle Inc., Farmington Hills, United States, 2016. 77 p.

Kumar P.S. and Kumar K. Buckling Analysis and Shape Optimization of Connecting Rod using FEA. REST Journal on Emerging trends in Modelling and Manufacturing 2016, 2(2), pp. 44-50.

Shenoy P.S. and Fatemi A. Dynamic analysis of loads and stresses in connecting rods. DOI: 10.1243/ 09544062JMES105. J.Mechanical Engineering Science. Proc.IMechE, 2006, Vol. 220 Part C, pp. 615-624.

Kumar M. and Prajapati S.N. Design, Buckling and Fatigue Failure Analysis of Connecting Rod: A Review. DOI: 10.22161/ijaers.4.7.7. International Journal of Advanced Engineering Research and Science (IJAERS), 2017, Vol.4(7), pp. 39-44.

Nagaraju K.L., Chandan R. Buckling Analysis Of Connecting Rod. International Research Journal of Engineering and Technology (IRJET), 2016, Vol. 03(08), pp. 1358-1361.

L.V. Grekhov and others. Mashinostroenie. Enciklopediya. Dvigateli vnutrennego sgoraniya, T. IV–14 [Mechanical Engineering. Encyclopedia. Internal combustion engines. Vol. IV–14]. Moscow, Mashinostroenie, 2013. 784 p.

Heywood J.B. Internal Combustion Engine Fundamentals. McGraw–Hill Series in Mech. Engineering. McGraw-Hill, Inc. USA, 1988. 930 p.

Dyachenko V.G. Teoriya dvigatelei vnutrennego sgoraniya [Theory of internal combustion engines]. Kharkov, HNADU, 2009. 500 p.

Levterov A.M., Levterova L.I. Analiz matematicheskikh modelei mehanizma sajeobrazovaniya pri sjiganii uglevodorodnyh topliv [Analysis of mathematical models of the mechanism of soot formation during the combustion of hydrocarbon fuels]. News of NTU "KhPI". Series: Mathematical Modeling in tech and technology, 2013, 5(979), pp. 130-141.

Lotus Engineering Software (LESOFT). Group Lotus PLC, 2019. Available at: http://www.lesoft.co (Accessed 20 October 2019).

Feodosyev V.I. Soprotivlenie materialov. Uchebnik dlya vuzov [Resistant materials. Textbook for high schools]. Moscow, Publishing MSTU. N. Bauman, 2018. 542 p.

Gere J.M. Mechanics of Materials. 6th Edition. Belmont, USA, Brooks/Cole –Thomson Learning, 2004. 940 p.

Birger I.A., Mavlyutov R.R. Soprotivlenie materialov [Resistant materials]. Moscow, Nauka, 1986. 560 p.

Favorin M.V. Momenty inerzcii tel. Spravochnik [Moments of bodies' inertia. Handbook]. Moscow, Mashinostroenie, 1977. 511 p.

Sorokin V.G., Gervasiev M.A. and others. Stali i splavy [Steels and alloys]. Moscow, Intermet Engineering, 2001. 608 p.

ANSYS Free Student Software Downloads. ANSYS, Inc., 2019. Available at: https://www.ansys.com/ academic/free-student-products (Accessed 20 October 2019).

Fedorova N.N., Valger S.A., Danilov M.N., Zakharova Yu.V. Osnovy raboty v ANSYS 17 [Fundamentals work in ANSYS 17]. Moscow, DMK Press, 2017. 210 p.

Published

2020-06-01

How to Cite

Хрулев, А. Э. (2020). Simulation of the connecting rod damage when fluid enters the engine cylinder. Vehicle and Electronics. Innovative Technologies, (17), 5–18. https://doi.org/10.30977/VEIT.2020.17.0.5

Issue

Section

Select a section