Graphoanalytic determination of symmetry parameters and total compensation of reactive power for a three-phase power supply system

Authors

  • Дмитро Степанович Шимук Ivan Kozhedub Kharkiv University of Air Force, Sumy 77/79 street, Kharkiv, 61023, Ukraine., Ukraine

DOI:

https://doi.org/10.30977/VEIT.2226-9266.2019.15.0.6

Abstract

Problem. The simulation of currents and voltages in electric three-phase power supply systems is an important means of improving the quality of electrical supply. It is precisely the alignment of the values of currents in the phases of electricity supply lines, thus, the power supplies are loaded evenly. In addition to the symmetry to reduce losses in the transmission of electrical energy, it is necessary to provide transmission from the source to the loading of only active power. Therefore, it is necessary to determine the parameters of symmetric-compensating devices, which, given the fact that active-reactive line resistance is taken into account, is a rather complicated task. Numerical optimization algorithms are used to solve this problem, the disadvantage of which is the possibility of not receiving a solution due to unsuccessful selection of initial approximation of parameters and (or) excessive number of computational operations. To solve such problems, symmetro-compensating devices are used. The need to take into account the influence of active-reactive resistance of transmission lines with accurate calculation of the parameters of symmetro-compensating devices requires the use of computer models and numerical optimization methods and subroutines. Goal. Development of the method of determining the parameters of the symmetrical device for three-phase power supply systems, based on the analysis of the existing operating mode of the system with subsequent graph-analytical determination of the parameters of the symmetry and full compensation of reactive power. Methodology. The complex methods of analysis of linear electric circuits are used. To determine the requirements of symmetry and compensation, the method of symmetric components is used. To determine the parameters of the compensating device, methods of analytic geometry are used, as well as matrix methods for solving systems of linear algebraic equations. Results. The proposed method allows graphoanalytic way to obtain a numerical solution to the problem of symmetry of currents in the line and compensation of reactive power in a three-phase power supply system with asymmetric load. It has been established that the parameters of the symmetric device, determined from the data of the initial analysis of the mode of operation of the power supply system with an asymmetric load, do not always provide a sufficient effect of symmetry and compensation. To improve the efficiency of the symmetry and compensation parameters of the simulating device should be specified according to the primary compensation. Originality. It is proposed to make an initial assessment of the mode of operation of the power supply system. Based on the initial assessment, the primary requirements for the parameters of symmetry and compensation are determined. Approximate values of the parameters of the symmetry and compensation are determined by processing the initial requirements by methods of analytical geometry. The effect of primary symmetry and primary compensation was estimated, and the primary requirements were clarified. After the correction, the full effect of the symmetry of currents and the compensation of reactive power in the lines of the power supply system have been achieved. Practical value. The proposed method allows to calculate the parameters of the symmetric compensation devices with high accuracy taking into account the resistance of lines in power supply systems with a wide range of changes in asymmetry and reactivity of loads, which ensures reduction of losses due to excessive asymmetry and reactivity of consumers.


Key words: three-phase system; asymmetry; symmetrical device; reactive power compensation.

Author Biography

Дмитро Степанович Шимук, Ivan Kozhedub Kharkiv University of Air Force, Sumy 77/79 street, Kharkiv, 61023, Ukraine.

К.т.н., асс.

References

Arrillaga J., Watson N. R., Chen S. Power system quality assessment. John Wiley. 2000. С. 300.

Acha E., Agelidis V. G., Anaya-Lara O., Miller T. J. E. Power Electronic Control in Electrical Systems. Newnes. 2002. С. 443. doi: 10.1016/B978-0-7506-5126-4.X5000-7.

Hofmann W., Schlabbach J., Just W. Reactive Power Compensation: A Practical Guide. John Wiley & Sons. 2012. С. 274.

Ягуп В. Г., Ягуп Е. В. К аналитическому определению емкостей симметрирующих конденсаторов. Електротехніка і енергетика. 2013. №. 2 (15). С. 287-290.

Ягуп В. Г., Ягуп Е. В. Расчет параметров симетро-компенсирующего устройства трехфазной системы электроснабжения на основе декомпозиции системы Технічна електродинаміка. 2016. № 6. С. 20-26.

Ягуп Е. В. Моделирование несимметричной системы электроснабжения с использованием оптимизации для определения параметров симметрирующего устройства. УкрДАЗТ. 2016. № 161. С. 130-138.

Ягуп В. Г., Ягуп Е. В. Определение режима компенсации реактивной мощности в четырехпроводной трехфазной системе электроснабжения с помощью поисковой оптимизации. Технічна електродинаміка. 2016. № 1. С. 60-66.

Ягуп В. Г., Ягуп Е. В. Исследование режимов полной компенсации реактивной мощности в трехфазной системе электроснабжения. Електротехніка і Електромеханіка. 2019. № 2. С. 61-65. doi: 10.20998/2074-272X.2019.2.09.

Москалев Ю. В. Определение параметров компенсирующего устройства с несимметричной структурой для уменьшения несимметрии напряжений и компенсации реактивной мощности в низковольтной трехфазной электрической сети. Известия Транссиба. 2016. № 4 (28). С. 101-108.

Гніліцький В. В. Розробка моделі симетрування напруг у трифазних мережах. Восточно-Европейский журнал передовых технологий. 2015. Т. 1, № 8(73). С. 11-14.

Bird J. Electrical circuit theory and technology. Routledge. 2017.

Hnatov, A., Arhun, S., Dziubenko, O. Ponikarovska, S. Choice of Electric Engines Connection Circuits in Electric Machine Unit of Electric Power Generation Device. Majlesi Journal of Electrical Engineering, 2018. 12(4). Р. 87-95. Retrieved from http://mjee.iaumajlesi.ac.ir/index/index.php/ee/article/view/2760

References

Arrillaga J., Watson N. R., Chen S. (2000) Power system quality assessment. John Wiley.

Acha E., Agelidis V. G., Anaya-Lara O., Miller T. J. E. (2002) Power Electronic Control in Electrical Systems. Newnes. doi: 10.1016/B978-0-7506-5126-4.X5000-7.

Hofmann W., Schlabbach J., Just W. (2012) Reactive Power Compensation: A Practical Guide. John Wiley & Sons.

Yagup V. G., Yagup E. V. (2016) K analiticheskomu opredeleniyu emkostey simmetriruyuschih kondensatorov. [Calculating the parameters of symmetry-compensating device for three-phase electrical power system based on the system decomposition]. Elektrotexnika i energety`ka. 2 (15). 287-290. [in Russian].

Yagup V. G., Yagup E. V. (2016) Raschet parametrov simetro-kompensiruyuschego ustroystva trehfaznoy sistemyi elektrosnabzheniya na osnove de-kompozitsii sistemyi. [Research of the modes of full compensation of reactive power in a three-phase power supply system]. Texnichna elektrody`namika. 6. 20-26. [in Russian].

Yagup E. V. (2016) Modelirovanie nesimmetrichnoy sistemyi elektrosnabzheniya s ispolzovaniem optimizatsii dlya opredeleniya parametrov simmetriruyuschego ustroystva. [Simulation of an unbalanced power supply system using optimization to determine the parameters of a balancing device]. UkrDAZT. 161. 130-138. [in Russian].

Yagup V. G., Yagup E. V. (2016) Opredelenie rezhima kompensatsii reaktiv-noy moschnosti v chetyirehprovodnoy trehfaznoy sisteme elektrosnabzheniya s pomoschyu poiskovoy optimizatsii. [Determining the mode of compensation of reactive power in a four-wire three-phase power supply system using search engine optimization]. Texnichna elektrody`namika. 1. 60-66. [in Russian].

Yagup V. G., Yagup E. V. (2019) Issledovanie rezhimov polnoy kompensatsii reaktivnoy moschnosti v trehfaznoy sisteme elektrosnabzheniya. [Investigation of modes of full compensation of reactive power in a three-phase power supply system]. Elektrotexnika i Elektromexanika. 2. 61-65. doi: 10.20998/2074-272X.2019.2.09. [in Russian].

Moskalev Yu. V. (2016) Opredelenie parametrov kompensiruyuschego ustroystva s nesimmetrichnoy strukturoy dlya umensheniya nesimmetrii napryazheniy i kompensatsii reaktivnoy moschnosti v nizko-voltnoy trehfaznoy elektricheskoy seti. [Determining the parameters of a compensating device with an asymmetric structure to reduce voltage unbalance and compensate reactive power in a low-voltage three-phase electric network]. Izvestiya Transsiba. 4 (28). 101-108. [in Russian].

Gnilicz`ky`j V. V. (2015) Rozrobka modeli sy`met-ruvannya naprug u try`fazny`x merezhax. [Development of the model of voltage equation in three-phase networks]. Vostochno-Evropeyskiy zhurnal peredovyih tehnologiy. 1, 8(73). 11-14. [in Ukranian].

Bird J. (2017) Electrical circuit theory and technology. Routledge.

Hnatov, A., Arhun, S., Dziubenko, O., Ponikarovska, S. (2018). Choice of Electric Engines Connection Circuits in Electric Machine Unit of Electric Power Generation Device. Majlesi Journal of Electrical Engineering. 12(4). 87-95. Retrieved from http://mjee.iaumajlesi.ac.ir/index/index.php/ee/article/view/2760

Published

2019-06-02

How to Cite

Шимук, Д. С. (2019). Graphoanalytic determination of symmetry parameters and total compensation of reactive power for a three-phase power supply system. Vehicle and Electronics. Innovative Technologies, (15), 6–16. https://doi.org/10.30977/VEIT.2226-9266.2019.15.0.6

Issue

Section

WAYS TO IMPROVE THE ECONOMIC AND ENVIRONMENTAL INDICATORS OF MOTOR VEHICLES. ENERGY SAVING TECHNOLOGIES